Answer: 288.8 m
Explanation:
We have the following data:
is the time it takes to the child to reach the bottom of the slope
is the initial velocity (the child started from rest)
is the angle of the slope
is the length of the slope
Now, the Force exerted on the sled along the ramp is:
(1)
Where
is the mass of the sled and
its acceleration
In addition, if we draw a free body diagram of this sled, the force along the ramp will be:
(2)
Where
is the acceleration due gravity
Then:
(3)
Finding
:
(4)
(5)
(6)
Now, we will use the following kinematic equations to find
:
(7)
(8)
Where
is the final velocity
Finding
from (7):
(9)
(10)
Substituting (10) in (8):
(11)
Finding
:

Answer:

Explanation:
Given that,
Frequency of a radio antenna is 1 MHz
Power, P = 21 kW
We need to find the the waves intensity 25 km from the antenna
. The object emits intenisty evenly in all direction. It can be given by :

So, the wave intensity 25 km from the antenna is
.
Gamma rays have the highest energies and the shortest wavelengths.
Answer:
Power= 6.84×10⁸ W
Explanation:
Given Data
Niagara falls at rate of=1.4×10⁶ kg/s
falls=49.8 m
To find
Power Generated
Solution
Regarding this problem
GPE (gravitational potential energy) declines each second is given from that you will find much the kinetic energy of the falling water is increasing each second.
So power can be found by follow
Power= dE/dt = d/dt (mgh)
Power= gh dm/dt
Power= 1.4×10⁶ kg/s × 9.81 m/s² × 49.8 m
Power= 6.84×10⁸ W