"A machine can decrease either the input force or the input distance needed to do a given amount of work" is the best statement that describes why a machine is useful.
Answer: Option D
<u>Explanation
:</u>
A machine is simply defined as a device that helps humans, helping them to transfer the required amount of force to compete any task, changing the direction of motion, increasing the magnitude of force to complete any task, reduce the time or distance needed to cover while performing any task.
Machines can be simple mechanical device or a combination of multiple mechanical or technical devices to reduce the amount of input force or increase the output.
Answer:
A
Explanation:
We are usually asked to close the valve of the gas cylinder in our various kitchens at home <u>due to the inflammable property of the Liquified Petroleum Gas.</u>
<em>Without closing the valve, the LPG would diffuse into our homes, and any form of spark would cause an explosion and lead to a fire. Lives and properties could be lost in the process.</em>
The correct option is A.
Answer:
See explanation
Explanation:
The magnitude of electronegativity difference between atoms in a bond determines whether that bond will be polar or not.
If the electronegativity difference between atoms in a bond is about 1.7, the bond is ionic. If the electronegativity difference is greater than 0.4 and less than 1.7, the bond will have a polar covalent character. Lastly, if the electronegativity difference between the bond is less than or equal to 0.4, the covalent bond is non polar.
The electronegativity difference between carbon and hydrogen is about 0.4 which corresponds to a nonpolar covalent bond hence the molecule is nonpolar.
The electronegativity difference between carbon and fluorine is about 1.5 indicating a highly polar bond. This gives CH3F an overall dipole moment thereby making the molecule polar.
Should be , b
. Not positive tho
Answer:
44.8 L
Explanation:
Using the ideal gas law equation:
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K)
At Standard temperature and pressure (STP);
P = 1 atm
T = 273K
Hence, when n = 2moles, the volume of the gas is:
Using PV = nRT
1 × V = 2 × 0.0821 × 273
V = 44.83
V = 44.8 L