To Find :
Number of moles of C₃H₆O present in a sample weighing 25.6 grams.
Solution :
Molecular mass of C₃H₆O is :
M = (6×12) + (6×1) + (16×1) grams
M = 94 grams/mol
We know, number of moles of 25.6 grams of C₃H₆O is :

Hence, this is the required solution.
Answer:
The type of bond between the Oxygen atom and the hydrogen is Covalent
this is because the 2 electrons are being shared by both hydrogen and oxygen
The type of bond this molecule makes as a whole is called a Hydrogen Bond
A hydrogen bond is formed because of the partial +ve and -ve charge in a molecule
The cause of the partial +ve and -ve charge is the comparatively high electronegativity of oxygen which makes the electron get attracted towards the oxygen atom while the hydrogens try to maintain the maximum distance from the lone pairs due to repulsion
Hope it helped
Kindly Mark Brainliest
First, find moles of oxygen gas: (3.01 x10^23 molec.)/(6.02 x10^23) =0.5mol O2
Second, multiply moles by the standard molar volume of a gas at STP:(0.5mol)(22.4L) = 11.2L O2
Answer:
Equilibrium shifts to the right
Explanation:
An exothermic reaction is one in which temperature is released to the environment. Hence, if the reaction vessel housing an exothermic reaction is touched after reaction completion, we will notice that the reaction vessel e.g beaker is hot.
To consider the equilibrium response to temperature changes, we need to consider if the reaction is exothermic or endothermic. In the case of this particular question, it has been established that the reaction is exothermic.
Heat is released to the surroundings as the reactants are at a higher energy level compared to the products. Hence, increasing the temperature will favor the formation of more reactants and as such, the equilibrium position will shift to the left to pave way for the formation of more reactants. Thus , more acetylene and hydrogen would be yielded