Answer:
Derived from the Pythagorean Theorem, the distance formula is used to find the distance between two points in the plane. The Pythagorean Theorem,
a
2
+
b
2
=
c
2
, is based on a right triangle where a and b are the lengths of the legs adjacent to the right angle, and c is the length of the hypotenuse. The relationship of sides
|
x
2
−
x
1
|
and
|
y
2
−
y
1
|
to side d is the same as that of sides a and b to side c. We use the absolute value symbol to indicate that the length is a positive number because the absolute value of any number is positive. (For example,
|
−
3
|
=
3
. ) The symbols
|
x
2
−
x
1
|
and
|
y
2
−
y
1
|
indicate that the lengths of the sides of the triangle are positive. To find the length c, take the square root of both sides of the Pythagorean Theorem.
c
2
=
a
2
+
b
2
→
c
=
√
a
2
+
b
2
It follows that the distance formula is given as
d
2
=
(
x
2
−
x
1
)
2
+
(
y
2
−
y
1
)
2
→
d
=
√
(
x
2
−
x
1
)
2
+
(
y
2
−
y
1
)
2
We do not have to use the absolute value symbols in this definition because any number squared is positive.
A GENERAL NOTE: THE DISTANCE FORMULA
Given endpoints
(
x
1
,
y
1
)
and
(
x
2
,
y
2
)
, the distance between two points is given by
d
=
√
(
x
2
−
x
1
)
2
+
(
y
2
−
y
1
)
2
Step-by-step explanation:
17,500 / 700 = 25 15 year old trees you will need
Hope this helped
$250 c+ $ 180 g > $ 950
<u>Step-by-step explanation:</u>
As a cryptographer (c), Miyoko earns per day = $ 250
As a geologist (g) , Miyoko earns per day = $ 180
So the equation comes to be $250 c+ $ 180 g = $ 950
The equation can be rewritten to find c as, (950-180 g) / 250
The equation can be rewritten to find g as, (950 - 250 c) / 180
Plugin different values of c and g in the above 2 equations, we can find that ,
To achieve the goal, Miyoko requires to be a geologist for 3 days and crpytographist for 2 days.
Answer: 3/55
Step-by-step explanation:
From the information given, the bag contains 3 red, 3 orange, 1 yellow, 2 purple marbles, and 2 Pink marbles. Each time he picks an orange marble, she will win a prize.
If he picks a marble the first time, the probability of picking an orange marble will be 3/11. After that we will have 10 marbles left as one has been picked and have 2 orange marbles left, then the probability of picking another orange marble will be 2/10.
Therefore, the probability he will win a prize on both picks will be:
= 3/11 × 2/10
= 6/110
= 3/55