Answer:
0.000025s
Explanation:
Period it’s. : T(s)= 1/f(Hz)=1/40000Hz=0.000025s
a compound microscope is used for viewing samples at high magnification<span> 40 - 1000x, which is achieved by the combined effect of two sets of lenses: the ocular lens in the eyepiece and the objective lenses close to the sample.</span>
Kinetic energy =(1/2) (mass) (speed²)
First object: KE = (1/2) (2 kg) (2m/s)² = 4 joules during the lift.
Second object: KE = (1/2) (4kg) (3 m/s)² = 18 joules during the lift.
The second object has more kinetic energy while it's being lifted
than the first object has while it's being lifted. Once they reach their
final heights and stop, neither object has any kinetic energy.
Answer:
the <em>ratio F1/F2 = 1/2</em>
the <em>ratio a1/a2 = 1</em>
Explanation:
The force that both satellites experience is:
F1 = G M_e m1 / r² and
F2 = G M_e m2 / r²
where
- m1 is the mass of satellite 1
- m2 is the mass of satellite 2
- r is the orbital radius
- M_e is the mass of Earth
Therefore,
F1/F2 = [G M_e m1 / r²] / [G M_e m2 / r²]
F1/F2 = [G M_e m1 / r²] × [r² / G M_e m2]
F1/F2 = m1/m2
F1/F2 = 1000/2000
<em>F1/F2 = 1/2</em>
The other force that the two satellites experience is the centripetal force. Therefore,
F1c = m1 v² / r and
F2c = m2 v² / r
where
- m1 is the mass of satellite 1
- m2 is the mass of satellite 2
- v is the orbital velocity
- r is the orbital velocity
Thus,
a1 = v² / r ⇒ v² = r a1 and
a2 = v² / r ⇒ v² = r a2
Therefore,
F1c = m1 a1 r / r = m1 a1
F2c = m2 a2 r / r = m2 a2
In order for the satellites to stay in orbit, the gravitational force must equal the centripetal force. Thus,
F1 = F1c
G M_e m1 / r² = m1 a1
a1 = G M_e / r²
also
a2 = G M_e / r²
Thus,
a1/a2 = [G M_e / r²] / [G M_e / r²]
<em>a1/a2 = 1</em>
Answer: Tides are periodic rises and falls of large bodies of water. Tides are caused by gravitational interaction between the earth and the moon. The gravitational attraction of the moon causes the oceans to bulge out in the direction of the moon.