Answer:
(a). V₁ = 10m/s (velocity inside the house), V₂ = 5m/s (velocity at ground level)
(b). P₂ = 236500 Pa
Explanation:
This is quite straight-forward so let us begin by defining the terms given.
Given that;
The cross-section area inside the student's house A₁ = 0.50 0.50 x 10-4m2.
Let us make the velocity of water inside the house be V₁
such that the Volume of water entering the per second is = A₁V₁
Therefore, in 90sec:
45 L = 90 A₁V₁
V₁ = 45 * 10⁻³m³ / 90*0.5*10⁻⁴
V₁ = 10m/s (velocity of water inside the house)
From the continuity equation we have that;
A₁V₁ = A₂V₂
0.5*10⁻⁴ * 10 = 1*10⁻⁴ V₂
V₂ = 5m/s (velocity at ground level)
(b). We are told to calculate the water pressure in the pipeline at the ground level.
Using Bernoulli's equation;
P₁ + pgh₁ + 1/2PV₁² (inside) = P₂ + pgh₂ + 1/2PV₂² (ground level)
1.01*10⁵ + 1000*9.8*10 + 1/2*1000*(10)² = P₂ + 0 + 1/2*1000*(5)²
P₂ (pressure) = 1.01*10⁵Pa
Therefore we have;
101000 + 98000 + 50000 = P₂ + 12500
P₂ = 236500 Pa
cheers I hope this helped !!
' +4 m/s² ' means that the pigeon's speed is 4 m/s greater every second.
Starting from zero speed, after 10 seconds, its speed is
(10 x 4m/s) = 40 m/s.
We can't say anything about its velocity, because we have
no information regarding the direction of its flight.
Answer:
at t=46/22, x=24 699/1210 ≈ 24.56m
Explanation:
The general equation for location is:
x(t) = x₀ + v₀·t + 1/2 a·t²
Where:
x(t) is the location at time t. Let's say this is the height above the base of the cliff.
x₀ is the starting position. At the base of the cliff we'll take x₀=0 and at the top x₀=46.0
v₀ is the initial velocity. For the ball it is 0, for the stone it is 22.0.
a is the standard gravity. In this example it is pointed downwards at -9.8 m/s².
Now that we have this formula, we have to write it two times, once for the ball and once for the stone, and then figure out for which t they are equal, which is the point of collision.
Ball: x(t) = 46.0 + 0 - 1/2*9.8 t²
Stone: x(t) = 0 + 22·t - 1/2*9.8 t²
Since both objects are subject to the same gravity, the 1/2 a·t² term cancels out on both side, and what we're left with is actually quite a simple equation:
46 = 22·t
so t = 46/22 ≈ 2.09
Put this t back into either original (i.e., with the quadratic term) equation and get:
x(46/22) = 46 - 1/2 * 9.806 * (46/22)² ≈ 24.56 m
Absolute, Atmospheric, Differential, and Gauge Pressure
Answer:
P = 86956.52 Pa
Explanation:
Data:
- F = 800 N
- A = 0.0092 m²
- P = ?
Use the formula:
Replace and solve:
The pressure it exerts on the ground is <u>86956.52 Pascal.</u>
Greetings.