Answer:
William Gilbert
Explanation:
first described the Earth as a giant dipole magnet 400 years ago. But, as Rod Wilson recounts, he did far more than this.
Answer:
1) Time interval Blue Car Red Car
0 - 2 s Constant Velocity Increasing Velocity
2 - 3 s Constant Velocity Constant Velocity
3 - 5 s Constant Velocity Increasing Velocity
5 - 6 s Constant Velocity Decreasing Velocity
2) For Red and Blue car y₂ = 120 v =
=
= 20 m/s
We get the same velocity for two cars because it is the average velocity of the car at the given interval of time. It is measured for initial and final position.
3) At t = 2s, the cars are the same position, and are moving at the same rate
Position - same
Velocity - same
The position-time graph shares the same spot for two cars.
For a current-carrying wire running perpendicular to a magnetic field, the magnetic force acting on the wire is given by:
F = ILB
F = magnetic force, I = current, L = wire length, B = magnetic field strength
Given values:
F = 0.60N, L = 1.0m, B = 0.20T
Plug in and solve for I:
0.60 = I(1.0)(0.20)
I = 3.0A
Answer:
The temperature reported by a thermometer is never precisely the same as its surroundings
Explanation:
In this experiment to determine the specific heat of a material the theory explains that when a heat interchange takes place between two bodies that were having different temperatures at the start, the quantity of heat the warmer body looses is equal to that gained by the cooler body to reach the equilibrium temperature. <u>This is true only if no heat is lost or gained from the surrounding.</u> If heat is gained or lost from the surrounding environment, the temperature readings by the thermometer will be incorrect. The experimenter should therefore keep in mind that for accurate results, the temperature recorded by the thermometer is similar to that of the surrounding at the start of the experiment and if it differs then note that there is either heat gained or lost to the environment.
Answer:
5
Explanation:
Hope this helps
PLEASE MARK AS BRAINLIEST !!!