Answer:
λ = 28,14 m
Explanation:
To find the wavelength of the wave you use the following formula:
(1)
v: speed of the wave = 1,97 m/s
λ: wavelength
f: frequency of the wave = 0,07 Hz
You replace the values of v and f in the equation (1) and solve for λ:

hence, the wavelength of the wave is 28,14 m
Answer: I would say it would be 3.9
but i believe there is something missing shorty.
Explanation:
well there is nothing there and it could be different by diffrent objects, idk
Answer
given,
Mass of the runner, M = 70 Kg
speed of the runner on the second base = 4.35 m/s
speed at the base = 0 m/s
Acceleration due to gravity,g = 9.8 m/s²
a) magnitude of mechanical energy lost
Mechanical energy lost is equal top gain in kinetic energy



b) Work done = Force x displacement
W = F. x
F = μ mg
W = μ mg . x
Work done is equal to 662.29 J

using the coefficient of the friction,μ = 0.7

x = 1.38 m
Hence, the runner will slide to 1.38 m.
Answer: C
Mass times its velocity
Explanation:
Momentum is a measurement of a stability of the system . When momentum is higher system is stable. Ex : Motion of a bullet when its velocity become less its get fallen
Momentum =Mass * Velocity
It's a vector and it's direction is same as velocity direction .