Answer:0.829 to 0.853
Explanation:
Given
height through ball is dropped 
velocity at just before collision is 


if the now if the ball rises to a height of 175 cm , velocity after collision to reach at that height is

if the ball rises to an height of 185 cm then velocity after collision

value of e for 


e for 185 cm

Range of e is 0.829 to 0.853
Answer:
B. You would weigh the same on both planets because their masses and the distance to their centers of gravity are the same.
Explanation:
Given that Planets A and B have the same size, mass.
Let the masses of the planets A and B are
and
respectively.
As masses are equal, so
.
Similarly, let the radii of the planets A and B are
and
respectively.
As radii are equal, so
.
Let my mass is m.
As the weight of any object on the planet is equal to the gravitational force exerted by the planet on the object.
So, my weight on planet A, 
my weight of planet B, 
By using equations (i) and (ii),
.
So, the weight on both planets is the same because their masses and the distance to their centers of gravity are the same.
Hence, option (B) is correct.
Science
ask me in comments
l
v
Answer:
240 V
Explanation:
number of turns in primary coil, Np = 10
Number of loops in secondary coil, Ns = 20
Voltage in primary coil, Vp = 120 V
Let the voltage in secondary coil is Vs.
So, Vs / Vp = Ns / Np
Vs / 120 = 20 / 10
Vs / 120 = 2
Vs = 240 V
Thus, the voltage in secondary coil is 240 Volt.
<em>A straight piece of wire with a current I flowing through it is placed in a magnetic field</em>
<em>A straight piece of wire with a current I flowing through it is placed in a magnetic fielduniform and perpendicular to the magnetic field lines. Magnetic force acting on the string</em>
<em>A straight piece of wire with a current I flowing through it is placed in a magnetic fielduniform and perpendicular to the magnetic field lines. Magnetic force acting on the stringthere is a way</em>