1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Digiron [165]
3 years ago
12

Planets A and B have the same size, mass, and direction of travel, but planet A is traveling through space at half the speed of

planet B. Which statement correctly explains the weight you would experience on each planet? A. You would weigh less on planet B because it is traveling twice as fast as planet A. B. You would weigh the same on both planets because their masses and the distance to their centers of gravity are the same. O C. You would weigh more on planet B because it is traveling twice as fast as planet A. D. You would weigh the same on both planets because your mass would adjust depending on the planet's speed.​
Physics
1 answer:
Ganezh [65]3 years ago
4 0

Answer:

B. You would weigh the same on both planets because their masses and the distance to their centers of gravity are the same.

Explanation:

Given that Planets A and B have the same size, mass.

Let the masses of the planets A and B are m_A and m_B respectively.

As masses are equal, so m_A=m_B\cdots(i).

Similarly, let the radii of the planets A and B are r_A and r_B respectively.

As radii are equal, so r_A=r_B\cdots(ii).

Let my mass is m.

As the weight of any object on the planet is equal to the gravitational force exerted by the planet on the object.

So, my weight on planet A, w_A= \frac {Gm_Am}{r_A^2}

my weight of planet B, w_B=\frac {Gm_Bm}{r_B^2}

By using equations (i) and (ii),

w_B=\frac {Gm_Am}{r_A^2}=w_A.

So, the weight on both planets is the same because their masses and the distance to their centers of gravity are the same.

Hence, option (B) is correct.

You might be interested in
The combined-gas law relates which of these?
Fofino [41]
The combined-gas law relates which temperature, pressure and volume.

Temperature=T
Pressure=P
Volume=V

(P₁*V₁) / T₁=(P₂*V₂) / T₂

D. Temperature, pressuere and volume.
5 0
4 years ago
A 1 m long wire of diameter 1mm is submerged in an oil bath of temperature 25-degC. The wire has an electrical resistance per un
Zarrin [17]

Answer:

steady state temperature =88.7deg C

t=time within  1 deg C of it steady state is 8.31s

Explanation:

A 1 m long wire of diameter 1mm is submerged in an oil bath of temperature 25-degC. The wire has an electrical resistance per unit length of 0.01 Ω/m. If a current of 100 A flows through the wire and the convection coefficient is 500W/m2K, what is the steady state temperature of the wire? From the time the current is applied, how long does it take for the wire to reach a temperature within 1-degC of the steady state value? The density of the wire is 8,000kg/m3, its heat capacity is 500 J/kgK and its thermal condu

The diameter of the wire is known to be=1mm

properties=

The density of the wire is 8,000 kg/m3,

heat capacity is 500 J/kgK

themal conductivity is 20W/m.K

electrical resistance per unit length of 0.01 Ω/m

from lump capavity method

B_{i} =\frac{hr/2}{k}

500*(2.5*10^-4)/20

0.006<0.1

we know also, to find steady state temperature

\piDh(T-Tinf)=I^{2} R_{e}

make T the subject of the equation , we have

T=25+\frac{100^2*0.01}{\pi*0.001*500 }

T=88.7 degC

rate of chnage in temperature

dT/dt=\frac{I^2*Re}{rho*c*\pi*D^2/4 } -\frac{4h}{rho*c*D} (T-Tinf)

at t=o and integrating both sides\frac{T-Tinf-(I^2*Re/\pi*Dh) }{Ti-Tinf-(I^2*Re/\pi*Dh } =exp\frac{-4ht}{rho*c*D}

we have

\frac{87.7-25-63.7}{25-25-63.7} =exp\frac{4*500t}{8000*500*0.001}

t=8.31s

steady state temperature =88.7deg C

t=time within  1 degC of it steady stae is 8.31s

7 0
3 years ago
How is the lifetime of a star related to its mass?
Flauer [41]
Stars having less mass collapses early than those with more mass. This can be explained by Einstein's equation E=mc².
According to this equation, mass of stars is converted into light due to thermonuclear reactions occuring in the core of star which acts as engine of the stars. This thermonuclear reactions keeps star alive. Thermonuclear reactions occurs slowly in massive stars hence massive stars live more than light stars.
6 0
4 years ago
When you jump from an elevated position you usually bend your knees upon reaching the ground. By doing this, you make the time o
dsp73

Answer:

c. about 1/10 as great.

Explanation:

While jumping form a certain height when we bend our knees upon reaching  the ground such that the time taken to come to complete rest is increased by 10 times then the impact force gets reduced to one-tenth of the initial value when we would not do so.

This is in accordance with the Newton's second law of motion which states that the rate of change in velocity is directly proportional to the force applied on the body.

Mathematically:

F\propto\frac{d}{dt} (p)

\Rightarrow F=\frac{d}{dt} (m.v)

since mass is constant

F=m\frac{d}{dt}v

when dt=10t

then,

F'=m.\frac{v}{10\times t}

F'=\frac{1}{10} \times \frac{m.v}{t}

F'=\frac{F}{10} the body will experience the tenth part of the maximum force.

where:

\frac{d}{dt} = represents the rate of change in dependent quantity with respect to time

p= momentum

m= mass of the person jumping

v= velocity of the body while hitting the ground.

7 0
3 years ago
A person drives 70 km/h in 1 hour to the east, then 80 km/h for another hour to the east. What
andre [41]

Answer: The average velocity is 150 km/h

Explanation: 70+80=150

6 0
3 years ago
Other questions:
  • An old clock has a spring that must be wound to make the clock hands move. Which statement describes the energy of the spring an
    15·2 answers
  • Between a piece of paper and a rock, which will fall the fastest and why?
    6·1 answer
  • Por que no céu sem nuvens a lua nova não é visivel e a lua cheia aparece em grande destaque?
    12·1 answer
  • On the moon the surface temperature ranges from 379 K during the day to 1.04 x 102 K at night. Convert these temperatures to the
    13·1 answer
  • A 4-kg mass moving with speed 2 m/s, and a 2-kg mass moving with a speed of 4 m/s, are gliding over a horizontal frictionless su
    13·1 answer
  • I need help with this physics question
    10·1 answer
  • A calorimeter uses the temperature change of water to determine the _____ of another substance.
    10·1 answer
  • A basketball is tossed upwards with a speed of 5.0 m/s. We can ignore air resistance. What is the maximum height reached by the
    7·1 answer
  • Why are Big cinema hall are carpeted and their walls are made of some rough materials​
    11·1 answer
  • Describe what happened. When was there more potential energy in the system?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!