Answer:
I = 26.36 cosω t A
Explanation:
Given that
C=0.74 mF
Vrms= 82 V
Frequency ,f= 49 Hz
We know that ω = 2 π f
ω = 2 x π x 49
ω = 307.72 rad/s
As we know that voltage given as
V= Vo sinω t

\
Vo=115.96 V
V=115.96 sinω t
The current given as




I = 26362.67 cosω t mA
I = 26.36 cosω t A
This is the current at time ant time t.
We have: v i (initial velocity) = 6 m/sv = 1.1 m/sa = - 9.8 m/s²v = v i + a · t1.1 m/s = 6 m/s - 9.8 m/s² t9.8 t = 6 - 1.19.8 t = 4.9t = 4.9 : 9.8t = 0.5 sThen the replacement:x = xi + vi · t + a t² / 2( xi = 0 )x = 6 · 0.5 - 9.8 · 0.25 / 2x = 3 - 1.225Answer:
x = 1.775 m
Complete Question
The complete question is shown on the first uploaded image
Answer:
The value is 
Explanation:
Generally for an n-type semiconductor the current density is mathematically represented as

Here
is mathematically represented as

=> 
=> 
So

From the diagram 
=> 
So


So from 
substitute
for q and
and from the diagram
So


Answer:
The options are not provided, so i will answer in a general way.
We know that:
The movement is along a straight horizontal surface, then we have one-dimensional motion.
The speed is 2m/s
We want a graph of position vs time.
Now, remember the relation:
Distance = Speed*Time
Then we can write the position as a function of time as:
P(t) = 2m/s*t + P0
Where t is our variable, that represents time in seconds, and P0 is the position at time t = 0seconds, we can assume that this is zero.
Then the equation is:
P(t) = 2m/s*t
And the graph is something like:
Answer:
The frequency of the photon is
.
Explanation:
Given that,
Energy
We need to calculate the energy
Using relation of energy

Where,
= energy spacing


Put the value of h into the formula


Hence, The frequency of the photon is
.