Answer:
Change in kinetic energy = 3297280 J
Explanation:
Given that,
Mass, m = 920 kg
Speed of a car, v = 92 m/s
Kinetic energy, K = 3,893,440 J
If the speed of a car, V = 36 m/s
Net kinetic energy is given by :
The change in kinetic energy = 3,893,440 - 596160
= 3297280 J
So, the change in kinetic energy of the car is 3297280 J.
Distance of 400m.
Use your kinematics equation to solve for distance (we can use kinematics b/c acceleration is constant).
d = (initial velocity x time) + 1/2 at^2
d = (20 x 10) + 1/2 (4) (10)^2
d = 200 + 200
d = 400 m
The acceleration is -9.8 m/s²
Hi there!!
When you throw a ball upward, there is a downward acceleration that makes the ball return to your hand. This acceleration is produced by gravity.
The average acceleration is calculated as the variation of the speed over time. In this case, we know the time and the initial and final speed. Then:
acceleration = final speed - initial speed/ elapsed time
acceleration = -4.3 m/s - 4.3 m/s / 0.88 s
acceleration = -9.8 m/s²
Answer:2.55 rad/s
Given
Diameter of ride=5 m
radius(r)=2.5 m
Static friction coefficient range=0.60-1
Here Frictional force will balance weight
And limiting frictional force is provided by Centripetal force
weight of object=mg
Equating two
f=mg
At the very beginning it is what states the whole life cycle