Answer:
The amplitude of the subsequent oscillations is 13.3 cm
Explanation:
Given;
mass of the block, m = 1.25 kg
spring constant, k = 17 N/m
speed of the block, v = 49 cm/s = 0.49 m/s
To determine the amplitude of the oscillation.
Apply the principle of conservation of energy;
maximum kinetic energy of the stone when hit = maximum potential energy of spring when displaced

Therefore, the amplitude of the subsequent oscillations is 13.3 cm
90 degrees - 30 = 60 degrees
Velocity = (5m/s - 4.35m/s x cos(30)) / cos(60)
Velocity = 2.47 m/s
The answer is D) 2.47 m/s at 61.9 degrees
Complete Question
A ball having mass 2 kg is connected by a string of length 2 m to a pivot point and held in place in a vertical position. A constant wind force of magnitude 13.2 N blows from left to right. Pivot Pivot F F (a) (b) H m m L L If the mass is released from the vertical position, what maximum height above its initial position will it attain? Assume that the string does not break in the process. The acceleration of gravity is 9.8 m/s 2 . Answer in units of m.What will be the equilibrium height of the mass?
Answer:


Explanation:
From the question we are told that
Mass of ball 
Length of string 
Wind force 
Generally the equation for
is mathematically given as




Max angle =
Generally the equation for max Height
is mathematically given as



Generally the equation for Equilibrium Height
is mathematically given as



The mass of Jupiter is 1.9 x 1027 kg.
We will have that the graph that describes the scenario is given by graph B.