140 g of nitrogen (N₂)
Explanation:
We have the following chemical equation:
N₂ + 3 H₂ -- > 2 NH₃
Now, to find the number of moles of ammonia we use the Avogadro's number:
if 1 mole of ammonia contains 6.022 × 10²³ molecules
then X moles of ammonia contains 6.022 × 10²⁴ molecules
X = (1 × 6.022 × 10²⁴) / 6.022 × 10²³
X = 10 moles of ammonia
Taking in account the chemical reaction we devise the following reasoning:
If 1 mole of nitrogen produces 2 moles of ammonia
then Y moles of nitrogen produces 10 moles of ammonia
Y = (1 × 10) / 2
Y = 5 moles of nitrogen
number of moles = mass / molecular weight
mass = number of moles × molecular weight
mass of nitrogen (N₂) = 5 × 28 = 140 g
Learn more about:
Avogadro's number
brainly.com/question/13772315
#learnwithBrainly
Answer:
ΔG° = -5.4 kJ/mol
ΔG = 873.2 J/mol = 0.873 kJ /mol
Explanation:
Step 1: Data given
ΔG (NO2) = 51.84 kJ/mol
ΔG (N2O4) = 98.28 kJ/mol
Step 2:
ΔG = ΔG° + RT ln Q
⇒with Q = the reaction quatient
⇒with T = the temperature = 298 K
⇒with R = 8.314 J / mol*K
⇒with ΔG° = ΔG° (N2O4) - 2*ΔG°(NO2
)
⇒ ΔG° = 98.28 kJ/mol - 2* 51.84 kJ/mol
⇒ ΔG° = -5.4 kJ/mol
Part B
ΔG = ΔG° =RT ln Q
⇒with G° = -5.4 kj/mol = -5400 j/mol
⇒
with R = 8.314 J/K*mol
⇒with T = 298 K
⇒with Q = p(N2O4)/ [ p(NO2) ]² = 1.63/0.36² = 12.577
ΔG = -5400 + 8.314 * 298 * ln(12.577)
ΔG = -5400 + 8.314 * 298 * 2.532
ΔG = 873.2 J/mol = 0.873 kJ/mol
Cause latin name of Pb is plumbum.
The same K - potassium - latin name is kalium.
Answer:

Explanation:
Hello,
In this case, given that the mass of the product is 0.534 g, we can infer that the percent composition of tin is:

Therefore, the percent composition of oxygen is 6.4% for a 100% in total. Thus, with such percents we compute the moles of each element in the oxide:

In such a way, for finding the smallest whole number we divide the moles of both tin and oxygen by the moles of oxygen as the smallest moles:

Therefore, the empirical formula is:

Best regards.