Answer:
Explanation:
Depression in freezing point is given by:

= Depression in freezing point
i= vant hoff factor = 1 (for non electrolyte like urea)
= freezing point constant = 
m= molality

Weight of solvent (X)= 950 g = 0.95 kg
Molar mass of non electrolyte (urea) = 60.06 g/mol
Mass of non electrolyte (urea) added = ?


Thus
urea was dissolved.
Animal fibers are fibers from animals and consist mainly of protein. They contain not only silk fiber from silkworms and fur fiber from sheep wool but also collagen fiber extracted from animal skins, chitin from crustaceans, and shellfish like shrimp and chitosan made by deacetylating chitin.
The 02 is a solid. I hope thus helped you :)
Answer:
A: Antibonding molecular orbitals are higher in energy than all of the bonding molecular orbitals.
Explanation:
Molecular orbital theory describes <u>covalent bonds in terms of molecular orbitals</u>, which result from interaction of the atomic orbitals of the bonding atoms and are associated with the entire molecule.
A bonding molecular orbital has lower energy and greater stability than the atomic orbitals from which it was formed. An antibonding molecular orbital has higher energy and lower stability than the atomic orbitals from which it was formed.
Electrons in the antibonding molecular orbital have higher energy (and less stability) than they would have in the isolated atoms. On the other hand, electrons in the bonding molecular orbital have less energy (and hence greater stability) than they would have in the isolated atoms.