Explanation:
Upon dissolution of KCl heat is generated and temperature of the solution raises.
Therefore, heat generated by dissolving 0.25 moles of KCl will be as follows.

= 4.31 kJ
or, = 4310 J (as 1 kJ = 1000 J)
Mass of solution will be the sum of mass of water and mass of KCl.
Mass of Solution = mass of water + (no. of moles of KCl × molar mass)
= 200 g + 
= 200 g + 13.625 g
= 213.625 g
Relation between heat, mass and change in temperature is as follows.
Q = 
where, C = specific heat of water = 
Therefore, putting the given values into the above formula as follows.
Q = 
4310 J =
Thus, we can conclude that rise in temperature will be
.
The sample response given in the question is right.
To find the answer, we need to know more about the distance and displacement.
<h3>How distance differ from displacement?</h3>
- Displacement is the shortest distance between the initial and final points of a body.
- It is the change in position with a fixed direction.
- Displacement is a vector quantity and can be positive, negative or zero values.
- Distance is the length of actual path of the body between initial and final positions.
- It's a scalar quantity and it can be positive or zero.
- The magnitude of displacement is less than or equal to the distance travelled.
Thus, we can conclude that the given sample response is right.
Learn more about distance here:
brainly.com/question/28124225
#SPJ1
That's the answer on that picture
Answer:
- <em>Oxidation half-reaction</em>:
Fe²⁺(aq) → Fe³⁺(aq) + 1e⁻
- <em>Reduction half-reaction</em>:
Ce⁴⁺(aq) + 1e⁻ → Ce³⁺(aq)
Explanation:
The reaction that takes place is:
- Fe²⁺(aq) + Ce⁴⁺(aq) → Fe³⁺(aq) + Ce³⁺(aq)
The <em>oxidation half-reaction</em> is:
- Fe²⁺(aq) → Fe³⁺(aq) + 1e⁻
It is an oxidation because the oxidation state of Fe increases from 2+ to 3+.
The <em>reduction half-reaction</em> is:
- Ce⁴⁺(aq) + 1e⁻ → Ce³⁺(aq)
It is a reduction because the oxidation state of Ce decreases from 4+ to 3+.
It’s the measure of spaces between objects. It affects groundwater infiltration by having more water fill the spaces between it. For example, is you have bigger rocks the spaces between it are bigger therefore the groundwater infiltration rate is faster. If the rocks are smaller, they are tightly packed and it’s not easy for groundwater infiltration.