The correct answer is c. Temperature is the average kinetic energy of a sample so if two samples have the same temperature they will also have the same average kinetic energy. I hope this helps. Let me know if anything is unclear.
Answer:
I can't draw diagrams on this web site but I can do with numbers I think. So an electron is moved from n = 1 to n = 5. I'm assuming I've interpreted the problem correctly; if not you will need to make a correction. I'm assuming that you know the electron in the n = 1 state is the ground state so the 4th exited state moves it to the n = 5 level.
n = 5 4th excited state
n = 4 3rd excited state
n = 3 2nd excited state
n = 2 1st excited state
n = 1 ground state
Here are the possible spectral lines.
n = 5 to 4, n = 5 to 3, n = 5 to 2, n = 5 to 1 or 4 lines.
n = 4 to 3, 4 to 2, 4 to 1 = 3 lines
n = 3 to 2, 3 to 1 = 2 lines
n = 2 to 1 = 1 line. Add 'em up. I get 10.
b. The Lyman series is from whatever to n = 1. Count the above that end in n = 1.
c.The E for any level is -21.8E-19 Joules/n^2
To find the E for any transition (delta E) take E for upper n and subtract from the E for the lower n and that gives you delta E for the transition.
So for n = 5 to n = 1, use -Efor 5 -(-Efor 1) = + something which I'll leave for you. You could convert that to wavelength in meters with delta E = hc/wavelength. You might want to try it for the Balmer series (n ending in n = 2). I think the red line is about 650 nm.
Explanation:
The answer is: 0.158 mol
You find this by doing:
number of moles (n) = mass (m) / molar mass (M)
n=158.034/25.0
Answer:
<h2>pH = 4.44 </h2>
Explanation:
The pH of a substance can be found by using the formula
![p H = - log[ H^{ + } ]](https://tex.z-dn.net/?f=p%20H%20%20%3D%20%20-%20%20%20log%5B%20H%5E%7B%20%2B%20%7D%20%20%5D)
where [ H+ ] is the hydrogen ion concentration of the solution
From the question
[ H + ] = 3.60 × 10^-5 M
So the pH is

We have the final answer as
<h3>pH = 4.44 </h3>
Hope this helps you