The description which accurately represents a water molecule is slightly negative oxygen pole, slightly positive hydrogen poles.
Water is a polar molecule. This means that the molecule has a dipole moment.
The polarity of water arises from the difference in electronegativity between hydrogen and oxygen.
Hence, in water molecule, oxygen is slightly negative and hydrogen is slightly positive thereby resulting in a dipole.
Learn more: brainly.com/question/10904296
Answer:
- The room mantained at a lower temperature will contain more air molecules.
Explanation:
1) Since the two rooms are <em>connected by an open door</em>, you assume pressure equilibrium: the pressure on the two rooms is the same.
2) Since you consider <em>two equal size rooms</em>, both volumes are equal.
3) Assuming ideal gas behavior, pressure (P), temperature (T), volume (V) and number of moles (n) are related by the equation PV = nRT
4) Naming T₁ the lower temperature, T₂ the higher temperature, n₁ the number of moles of air in the room at lower temperature, and n₂ the number of moles of air in the room at higher temperature, you get:
- n₁ T₁ = n₂ T₂, or n₁ / n₂ = T₂ / T₁
5) That means that the amount of molecules (number of moles) is inversely related to the temperature: the higher the temperature the lower the number of moles, and the lower the temperature the greater the number of moles.
Hence, the answer is that <em>the room that contains more air molecules is the room mantained at a lower temperature.</em>
Answer:
A. air expands when heated.
Explanation:
hope this helps!
Answer:
0.00915 M of
remain after 5.16 seconds.
Explanation:
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given that:
The rate constant, k =
s⁻¹
Initial concentration
= 0.054 M
Final concentration
= ? M
Time = 5.16 s
Applying in the above equation, we get that:-
<u>0.00915 M of
remain after 5.16 seconds.</u>
The phenomenon known as "salting-out" occurs at very high ionic strengths, when protein solubility declines as ionic strength rises. As a result, salting out may be used to segregate proteins according to how soluble they are in salt solutions.
Because large levels of sodium chloride disturb the bonds and structure of the active site, the rate of enzyme activity will gradually decrease as the concentration of sodium chloride rises. As a result, some of the active sites get denaturized and the starch loses its ability to attach to them. As more enzymes get denatured and eventually cease to function, enzyme activity will steadily wane.