Answer:
b: Neither atoms will have a full valence shell
Explanation:
I think sooo
Answer:
Graphite (/ˈɡræfaɪt/), archaically referred to as plumbago, is a crystalline form of the element carbon with its atoms arranged in a hexagonal structure. It occurs naturally in this form and is the most stable form of carbon under standard conditions. ... Graphite is used in pencils and lubricants.
It is because C4 compromises on water loss and CAM compromises on photorespiration. and Both minimize photorespiration but expend more ATP during carbon fixation.
Answer:
2
Step-by-step explanation:
A. Moles before mixing
<em>Beaker I:
</em>
Moles of H⁺ = 0.100 L × 0.03 mol/1 L
= 3 × 10⁻³ mol
<em>Beaker II:
</em>
Beaker II is basic, because [H⁺] < 10⁻⁷ mol·L⁻¹.
H⁺][OH⁻] = 1 × 10⁻¹⁴ Divide each side by [H⁺]
[OH⁻] = (1 × 10⁻¹⁴)/[H⁺]
[OH⁻] = (1 × 10⁻¹⁴)/(1 × 10⁻¹²)
[OH⁻] = 0.01 mol·L⁻¹
Moles of OH⁻ = 0.100 L × 0.01 mol/1 L
= 1 × 10⁻³ mol
B. Moles after mixing
H⁺ + OH⁻ ⟶ H₂O
I/mol: 3 × 10⁻³ 1 × 10⁻³
C/mol: -1 × 10⁻³ -1 × 10⁻³
E/mol: 2 × 10⁻³ 0
You have more moles of acid than base, so the base will be completely neutralized when you mix the solutions.
You will end up with 2 × 10⁻³ mol of H⁺ in 200 mL of solution.
C. pH
[H⁺] = (2 × 10⁻³ mol)/(0.200 L)
= 1 × 10⁻² mol·L⁻¹
pH = -log[H⁺
]
= -log(1 × 10⁻²)
= 2
The answer would be: <span>dependent on the number of particles
If you see the ideal gas formula you know that volume is directly related to the number of particles.
Closed container volume could influence the pressure that will change the volume but the question seems to talk about open container. If the container is not closed, then the volume of container won't have any effect.
Mass is related to the number of particles, but not directly related to volume so this option is a bit ambiguous.</span>