Answer is: not enough <span>colorless syrupy liquid.
</span>n(H₂SO₄) = 1,2 mol.
M(H₂SO₄) = 2Ar(H) + Ar(S) + 4Ar(O) · g/mol.
M(H₂SO₄) = 2·1 + 32 + 4·16 · g/mol.
M(H₂SO₄) = 98 g/mol.
m(H₂SO₄) = n(H₂SO₄) · M(H₂SO₄).
m(H₂SO₄) = 1,2 mol · 98 g/mol.
m(H₂SO₄) = 117,6 g needed.
100 g is less that 117,6 g.
Add the change in temperature to your substance's original temperature to find its final heat. For example, if your water was initially at 24 degrees Celsius, its final temperature would be: 24 + 6, or 30 degrees Celsius.
Answer:
Mass of barium sulfate = 8.17 g
Explanation:
Given data:
Mass of sodium sulfate = 4.98 g
Mass of barium sulfate produced = ?
Solution:
Na₂SO₄ + Ba(NO₃)₂ → BaSO₄ + 2NaNO₃
Moles of sodium sulfate:
Number of moles = mass/molar mass
Number of moles =4.98 g / 142.04 g/mol
Number of moles = 0.035 mol
Now we will compare the moles pf sodium sulfate and with barium sulfate.
Na₂SO₄ : BaSO₄
1 : 1
0.035 : 0.035
Mass of barium sulfate:
Mass = number of moles × molar mass
Mass = 0.035 mol ×233.4 g/mol
Mass = 8.17 g
Answer:
Explanation:
sp² hybridization is found in those compounds having double bond .
Out of the given compounds only C₂H₂Cl₂ has double bond so this compound contains carbon with sp² hybridization .
Rest have sp³ hybridization because they are saturated compounds .