The answer is A. Water
Bronsted-Lowry base compounds are those that can accept protons
Bronsted-Lowry Acid Compounds are those that can recieve one
Water / H2O is an Amphoteric compund which mean that its molecul can act as a Base and Acid compound, so the answer is A.
Answer:
increases the frequency of particle collisions
Explanation:
One factor upon which the rate of reaction depends is the surface area of reactants.
According to the collision theory, reactions occur when reactant particles having the required (activation) energy collide with each other, this collision is inelastic. However, collision of particles having energies less than the activation energy results in elastic collisions and no chemical reaction.
The more the exposed surface area of reactants, the greater the number of particles that come into contact with each other and the more the chances of frequent effective collisions that lead to reaction.
Thus, powdered zinc reacts faster with hydrochloric acid than zinc strips
Answer:
10 kg of ice will require more energy than the released when 1 kg of water is frozen because the heat of phase transition increases as the mass increases.
Explanation:
Hello!
In this case, since the melting phase transition occurs when the solid goes to liquid and the freezing one when the liquid goes to solid, we can infer that melting is a process which requires energy to separate the molecules and freezing is a process that releases energy to gather the molecules.
Moreover, since the required energy to melt 1 g of ice is 334 J and the released energy when 1 g of water is frozen to ice is the same 334 J, if we want to melt 10 kg of ice, a higher amount of energy well be required in comparison to the released energy when 1 kg of water freezes, which is about 334000 J for the melting of those 10 kg of ice and only 334 J for the freezing of that 1 kg of water.
Best regards!
Answer:
I think it will carbon hope it helps
Answer:
C. The splitting apart of atomic nuclei
Explanation:
Nuclear fission is the splitting apart of atomic nuclei.