Answer:
B. a nuclear reactor core (1000°C)......
Answer:
14 mL
Explanation:
To prepare a solution by a concentrated solution, we must use the equation:
C1xV1 = C2xV2, where <em>C</em> is the concentration, <em>V</em> is the volume, 1 is the initial solution and 2 the final solution.
The final solution must have 2 mL and a concentration of 350 pg/mL, and the initial solution has a concentration of 50 pg/mL.
Then:
50xV1 = 350x2
50xV1 = 700
V1 = 700/50
V1 = 14 mL
Answer:
scavenger- eats dead carcasses
Explanation:
Answer:
C)52g KCl in 100g water at 80°C
Explanation:
A saturated solution is one that contains as much solute as it can dissolve in the presence of excess solute at that particular temperature.
A solutibility curve is a graph that shows the variability with temperature of the solubility of a solute in a given solvent. A solutibility curve can provide information of whether a solution formed frommthe solute and solvent are saturated or not at a given temperature.
From the solubility curve in the attachment below:
A) A saturated solution of NH₄Cl will contain about 52 g solute per 100 g sat 50 °C. Thus, a solution of 40 g NH₄Cl in 100 g water at 50 °C is an unsaturated solution.
B) A saturated solution of SO₂ at 10°C will contain about 70 g of solute in 100 g of water. Thus a solution of 2g SO₂ in 100g water at 10°C is an unsaturated solution.
C) A saturated solution of KCl at 80 °C will contain about 52 g of solute in 100 g of water. Thus, a solution of 52g KCl in 100g water at 80°C is a saturated solution.
D) A saturated solution of Kl at 20 °C will contain about 145 g of solute in 100 g of water. Thus, a solution of 120g KI in 100g water at 20°C is an unsaturated solution.