There are many consequences!
Some being:
* ADDICTION
* HEALTH ISSUES
* MENTAL ISSUES
Someone. or something will get hurt
Number of Atoms in Gold for given mass can be calculated using following formula,
# of Moles = Number of Atoms / 6.022 × 10²³
Or,
Number of Atoms = Moles × 6.022 × 10²³ ------- (1)
Calculating Moles,
As,
Moles = Mass / M.mass
So,
Moles = 4.25 g / 196.96 g/mol
Moles = 0.0215
Putting value of mole in eq.1,
Number of Atoms = 0.0215 × 6.022 × 10²³
Number of Atoms = 1.299 × 10²²
Result:
4.25 g of Gold Nugget contains 1.299 × 10²² Atoms.
Answer:
This question is incomplete, here's the complete question:
<em><u>"Suppose 0.0842g of potassium sulfate is dissolved in 50.mL of a 52.0mM aqueous solution of sodium chromate. Calculate the final molarity of potassium cation in the solution. You can assume the volume of the solution doesn't change when the potassium sulfate is dissolved in it. Round your answer to 2 significant digits."</u></em>
Explanation:
Reaction :-
K2SO4 + Na2CrO4 ------> K2CrO4 + Na2SO4
Mass of K2SO4 = 0.0842 g, Molar mass of K2SO4 = 174.26 g/mol
Number of moles of K2SO4 = 0.0842 g / 174.26 g/mol = 0.000483 mol
Concentration of Na2CrO4 = 52.0 mM = 52.0 * 10^-3 M = 0.052 mol/L
Volume of Na2CrO4 solution = 50.0 ml = 50 L / 1000 = 0.05 L
Number of moles of Na2CrO4 = 0.05 L * 0.052 mol/L = 0.0026 mol
Since number of moles of K2SO4 is smaller than number of moles Na2CrO4, so 0.000483 mol of K2SO4 will react with 0.000483 mol of Na2CrO4 will produce 0.000483 mol of K2CrO4.
0.000483 mol of K2CrO4 will dissociate into 2* 0.000483 mol of K^+
Final concentration of potassium cation
= (2*0.000483 mol) / 0.05 L = 0.02 mol/L = 0.02 M
Answer:
The 3R rule states that Radial cracks form a Right angle on the Reverse side of the force. This rule enables an examiner to determine readily the side on which a window or pane of glass was broken.
I hope it's helpful!