The electric force (and the gravitational force too) is inversely proportional
to the square of the distance between the objects involved.
In this question, the distance is increased by a factor of (1.25/0.95) .
So the electric force will change by the factor of (0.95/1.25)² .
The new force is
(1.32 N) · (0.95/1.25)² = 0.762... newton (rounded)
There a two significant digits
explanation:
Trailing zeros after a decimal point count if preceded by a non-zero value. Example: 0.01 one significant figure, 0.010 two significant figures, 0.0100 three significant figures.
Well, 0.1 is actually less than 0.7, but I understand what you're asking.
The coefficient of friction describes the relationship between two surfaces
that are sliding by each other. The higher the coefficient of friction is, the
'rougher' the meeting is, and the harder it is for one to slide over the other.
A skate blade against ice has a very low coefficient of friction. Sandpaper
against blue jeans has a high coefficient of friction.
A higher coefficient of friction means that when one thing is sliding over
the other one, friction robs more energy from the motion. It's harder to
push one thing over the other one, and when you let go, the moving one
slows down and stops sooner.
Air resistance is actually an example of friction. It prevents falling things
from falling as fast as they would if there were no air. The coefficient of
friction when something moves through air is pretty low. If the same
object were trying to move through molasses or honey, the coefficient
of friction would be greater.
Friction robs energy, and turns it into heat. So, especially in machinery with
moving parts, we want to make the coefficient of friction between the moving parts
as small as possible. That's what the OIL in a car's engine is for.
For the first one, the correct answer would be "<span>Substance changes its form but not its molecular composition.". During a physical change (let's say cutting paper), the substance has its shape changed, but it is still itself (paper).
</span><span>The second one is a bit trickier: </span>
Kinetic energy of a molecule is directly influenced by temperature. If there is a higher temperature it will have a higher kinetic energy which means the molecule moves at a higher velocity. This will increase the chance of particles bouncing off of each other during the chemical reaction. That explains why the rate of reaction will be higher at a higher temperature, rather than higher at a cool temperature. The correct answer would be lower at 39F.
The printing press had dramatic effects on European civilization. Its immediate effect was that it spread information quickly and accurately. This helped create a wider literate reading public.