Conservation of mass can be checked in an experiment . There are three steps to do it in a best way:
1. Weigh all the equipment and materials required in the experiment before the experiment.
2. Avoid spillage and evaporation during the experiment.
3. Weigh all the equipment and materials after the experiment.
If the mass is conserved then weight from step 1 is equal to weight from step 3.
Answer:
The specific heat for the metal is 0.466 J/g°C.
Explanation:
Given,
Q = 1120 Joules
mass = 12 grams
T₁ = 100°C
T₂ = 300°C
The specific heat for the metal can be calculated by using the formula
Q = (mass) (ΔT) (Cp)
ΔT = T₂ - T₁ = 300°C - 100°C = 200°C
Substituting values,
1120 = (12)(200)(Cp)
Cp = 0.466 J/g°C.
Therefore, specific heat of the metal is 0.466 J/g°C.
Answer:
number of moles of NaCl produce = 12 mol
Explanation:
Firstly, we need to write the chemical equation of the reaction and balance it .
Na(s) + Cl2(g) → NaCl(s)
The balanced equation is as follows:
2Na(s) + Cl2(g) → 2NaCl(s)
1 mole(71 g) of chlorine produces 2 moles(117 g) of sodium chloride
6 mole of chlorine gas will produce ? mole of sodium chloride
cross multiply
number of moles of NaCl produce = 6 × 2
number of moles of NaCl produce = 12 moles
number of moles of NaCl produce = 12 mol
Your answer would be 58.12g/mol ;)