I’m distilled water all of the dissolved substances mixed in water have been removed by evaporation.
Using the law of <span>dilution:
</span>initial Molarity = 3.5x10⁻⁶ M
<span>Initial volume = 4.00 mL
</span>
final Molarity = ??
final volume = 1.00 mL
Therefore:
Mi x Vi = Mf x Vf
(3.5x10⁻⁶) x 4.00 = Mf x 1.00
1.4x10⁻⁵ = Mf x 1.00
Mf = 1.4x10⁻⁵ / 1.00 =
1.4x10⁻⁵ M
Answer:
1.09 × 10⁻⁷ m
UV region
Explanation:
Step 1: Given and required data
Energy of the photon of light (E): 1.83 × 10⁻¹⁸ J
Planck's constant (h): 6.63 × 10⁻³⁴ J.s
Speed of light (c): 3.00 × 10⁸ m/s
Step 2: Calculate the wavelength (λ) of this photon of light
We will use the Planck-Einstein's relation.
E = h × c/λ
λ = h × c/E
λ = 6.63 × 10⁻³⁴ J.s × (3.00 × 10⁸ m/s)/1.83 × 10⁻¹⁸ J = 1.09 × 10⁻⁷ m
This wavelenght falls in the UV region of the electromagnetic spectrum.
Answer: 7.2418 x 10^-19 joules
Explanation:
1 eV equals 1.602 x 10^-19 joules
Then 4.52eV will be multiplied by the above value to give 7.2418 x 10^-19 joules which is the energy required to dissociate the hydrogen molecule