Answer:
Activation energy of phenylalanine-proline peptide is 66 kJ/mol.
Explanation:
According to Arrhenius equation-
, where k is rate constant, A is pre-exponential factor,
is activation energy, R is gas constant and T is temperature in kelvin scale.
As A is identical for both peptide therefore-
![\frac{k_{ala-pro}}{k_{phe-pro}}=e^\frac{[E_{a}^{phe-pro}-E_{a}^{ala-pro}]}{RT}](https://tex.z-dn.net/?f=%5Cfrac%7Bk_%7Bala-pro%7D%7D%7Bk_%7Bphe-pro%7D%7D%3De%5E%5Cfrac%7B%5BE_%7Ba%7D%5E%7Bphe-pro%7D-E_%7Ba%7D%5E%7Bala-pro%7D%5D%7D%7BRT%7D)
Here
, T = 298 K , R = 8.314 J/(mol.K) and 
So, ![\frac{0.05}{0.005}=e^{\frac{[E_{a}^{phe-pro}-(60000J/mol)]}{8.314J.mol^{-1}.K^{-1}\times 298K}}](https://tex.z-dn.net/?f=%5Cfrac%7B0.05%7D%7B0.005%7D%3De%5E%7B%5Cfrac%7B%5BE_%7Ba%7D%5E%7Bphe-pro%7D-%2860000J%2Fmol%29%5D%7D%7B8.314J.mol%5E%7B-1%7D.K%5E%7B-1%7D%5Ctimes%20298K%7D%7D)
(rounded off to two significant digit)
So, activation energy of phenylalanine-proline peptide is 66 kJ/mol
Answer:
Your lungs are part of the respiratory system.
Explanation:
A group of organs and tissues that work together to help you breathe.The respiratory system's main job is to move fresh air into your body while removing waste gases.
Was this helpful?
If so let me know and please mark me brainiest.
If a sample of gas is a 0.622-gram, volume of 2.4 L at 287 K and 0.850 atm. Then the molar mass of the gas is 7.18 g/mol
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates to the macroscopic properties of ideal gases.
An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Given :
The ideal gas equation is given below.
n = PV/RT
n = 86126.25 x 0.0024 / 8.314 x 287
n = 0.622 / molar mass (n = Avogardos number)
Molar mass = 7.18 g
Hence, the molar mass of a 0.622-gram sample of gas having a volume of 2.4 L at 287 K and 0.850 atm is 7.18 g
More about the ideal gas equation link is given below.
brainly.com/question/4147359
#SPJ1
We want to solve Q = mcΔT for the liquid water; its change in temperature will tell us the amount of thermal energy that flowed out of the reaction. The specific heat, c, of water is 4.184 J/g °C.
Q = (72.0 g)(4.184 J/g °C)(100 °C - 25 °C) = 22593.6 J
Q ≈ 2.26 × 10⁴ J or 22.6 kJ (three significant figures).