First, you should convert the temperature unit to absolute temperature.
Second, you shoul graph the points. Then you will find a pretty linear correlations among the points.
You can pick between using the best fit line or you could observe that as you get to higher temperatures the linear behavior is "more perfect".
I found this best fit line:
P = 2.608T + 14
Then, for T = 423K
P = 2.608(423) + 14 = 1117 mmHg
If you prefer to use the last two points, this is the calculus:
[P - P1] / [T - T1] = [P2 - P1] / [T2 - T1]
[P - 960]/[423 -373] = [960 - 880] / [373- 343]
=> P = 1093.3 mmHg.
You can pick any of the results 1177 mmHg or 1093 mmHg, You need more insight to choose one of them: conditions and error of the experiment for example.
Answer:
There are main six noble gases in the periodic table. The filling of 4f-orbitals occurs after 6s orbitals. The noble gas that belongs to the sixth period is Radon. Its electronic configuration is [
X
e
]
6
s
2
4
f
14
5
d
10
6
p
6 .
Therefore, the name of noble gas is Radon.
Answer:
Acceleration is the rate of change of velocity. Usually, acceleration means the speed is changing, but not always. When an object moves in a circular path at a constant speed, it is still accelerating, because the direction of its velocity is changing.
Explanation:
It goes with velocity
Answer:
The forward reaction is exothermic.
Explanation:
- Le Châtelier's principle states that when there is an dynamic equilibrium, and this equilibrium is disturbed by an external factor, the equilibrium will be shifted in the direction that can cancel the effect of the external factor to reattain the equilibrium.
- When the mixture turned darker brown, this means that the reaction is shifted towards the left direction (reactants side).
- The temperature is increased and the reaction shifted to the reverse direction, this means that the forward direction is exothermic.
- Exothermic reaction releases heat and when increasing the temperature, the reaction will be shifted to the reverse direction to suppress the effect of increasing the temperature.
- <em>So the right choice is: The forward reaction is exothermic. </em>
<em></em>