The change in pH is calculated by:
pOH = Protein kinase B + log [NH4+]/ [NH3]
Protein kinase B of ammonia = 4.74
initial potential of oxygen hydroxide= 4.74 + log 0.100/0.100 = 4.74
pH = 14 - 4.74=9.26
moles NH4+ = moles NH3 = 0.100 L x 0.100 M = 0.0100
moles H+ added = 3.00 x 10^-3 L x 0.100 M=0.000300
NH3 + H+ = NH4+
moles NH3 = 0.0100 - 0.000300=0.00970
moles NH4+ = 0.0100 + 0.000300=0.0103
pOH = 4.74 + log 0.0103/ 0.00970= 4.77
oH = 14 - 4.77 = 9.23
the change is = 9.26 - 9.23 =0.03
Explanation:
Below is an attachment containing the solution.
Answer: 1. CaO + H2O => Ca(OH)2
2. P4 + 5O2 => 2P2O5
3. 2 Ca + O2 => 2 CaO
4. 8 Cu + S8 => 8 CuS
5. CaO + H2O => Ca(OH)2
6. S8 + 8 O2 => 8 SO2
7. 3 H2 + N2 => 2 NH3
8. H2 + Cl2 =>2 HCl
9. 16 Ag + S8 => 8 Ag2S
10. Cr + O2 => 2Cr2O3
11. 2Al + 3Br2 => 2AlBr3
12. 2Na + I2 => 2NaI
13. 2H2 + O2 =>2 H2O
14. 4 Al + 3O2 => 2 Al2O3
Explanation:
heh.......... sorry man............... but this was posted over 5 hours ago........ so nobody is gonna see it and you probably dont need the answer anymore..... so errrr..... imma justtttt..... take these points :D
The factor that is generally responsible for higher melting point is intermolecular forces. The compounds that are covalent in nature are made of molecules rather than ions. It has been seen that some of the covalent compounds have polar molecules at one end, due to which the one end has more electronegative force than the other. The electrostatic force that is bounding the compound is the main cause of higher melting point of this compound. So it is true that with the increase of polarity of a compound creates higher melting point. .. hope I helped