The answer is A. when electrons are shared between atoms
2-bromo-1-chloro-4-nitrobenzene is being synthesized in following sequence:
Step 1: Chlorination of Benzene:
This is Halogenation reaction of benzene. In this step benzene is reacted with Chlorine gas in the presence of lewis acid (i.e. FeCl₃). This results in the formation of Chlorobenzene as shown in red step below.
Step 2: Nitration of Chlorobenzene:
The chlorine atom on benzene has a ortho para directing effect. Therefore, the nitration of chlorobenzene will yield para nitro chlorobenzene as shown in blue step below.
Step 3: Bromination of 1-chloro-4-nitrobenzene:
In this step bromination is done by reacting bromine in the presence of lewis acid. The chlorine being ortho para directing in nature and nitro group being meta directing in nature will direct the incoming Br⁺ (electrophile) to the desired location. Hence, 2-bromo-1-chloro-4-nitrobenzene is synthesized in good yield.
Answer:
Option-4 (3:2) is the correct answer.
Explanation:
Following steps are taken to balance the given unbalanced chemical equation.
Step 1: Write the unbalanced chemical equation,
N₂ + H₂ → NH₃
Step 2: Balance Nitrogen Atoms;
There are 2 nitrogen atoms on left hand side and 1 nitrogen atoms on right hand site therefore, to balance them multiply NH₃ on right hand side by 2 i.e.
N₂ + H₂ → 2 NH₃
Step 3: Balance Hydrogen Atoms;
Now, there are 2 hydrogen atoms on left hand side and 6 hydrogen atom on right hand site therefore, to balance them multiply H₂ on left hand side by 3 i.e.
N₂ + 3 H₂ → 2 NH₃
Now, the equation is balanced.
Step 4: Finding out mole ratios:
From balanced chemical equation it can be concluded that 3 moles of H₂ are involved in producing 2 moles of NH₃ hence, the mole ratio of consumption of H₂ to production of NH₃ is 3:2.
A. <span>principal energy level, sublevel, orbital, electron</span>
Electrical energy is the <span>type of energy present in the batteries of a flashlight.</span>