Answer:
The molarity of urea in this solution is 6.39 M.
Explanation:
Molarity (M) is <em>the number of moles of solute in 1 L of solution</em>; that is

To calculate the molality, we need to know the number of moles of urea and the volume of solution in liters. We assume 100 grams of solution.
Our first step is to calculate the moles of urea in 100 grams of the solution,
using the molar mass a conversion factor. The total moles of 100g of a 37.2 percent by mass solution is
60.06 g/mol ÷ 37.2 g = 0.619 mol
Now we need to calculate the volume of 100 grams of solution, and we use density as a conversion factor.
1.032 g/mL ÷ 100 g = 96.9 mL
This solution contains 0.619 moles of urea in 96.9 mL of solution. To express it in molarity, we need to calculate the moles present in 1000 mL (1 L) of the solution.
0.619 mol/96.9 mL × 1000 mL= 6.39 M
Therefore, the molarity of the solution is 6.39 M.
Answer:
D.
Explanation:
It would not be gain because it would say +6 instead of -2. Having a -2 charge means it wants to loose 2 electrons so it can form a full shell of 8 electrons. It wants to be inert (stable).
- Hope that helps! Please let me know if you need further explanation.
by putting to much current through it ?
sodium cloride is salt created from sodium Na and chlorine Ci
Na-sodium Ca- calcium
Ci-chlorine FL- flerovium
Ca- calcium Br-bromine
H- hydrogen He-helium
Hi there!
Your correct answer will be 12.2 cm³.
This is how you get there:
1 mL = 1 cm³
With this one conversion factor, you can extrapolate the final answer. When you add the granite to the water, which is filled to 25.0 mL, the water level then moves to 37.2 mL. If you subtract the before volume from the volume after, you will get an answer of 12.2 mL. Then use the conversion factor and, voila! 12.2 cm³
I hope this helps!
Brady