Answer:
x > 0
Step-by-step explanation:
Domain of a function is defined by the set of x-values of the graph of a function.
From the graph attached,
x-values are starting from x > 0 [Since x ≠ 0] and moves towards infinity,
Therefore, domain of the function will be,
(0, ∞) Or x > 0
the answer is 2.7. 5.0 - 2.3 = 2.7
Answer:
C. ![f(x)=\sqrt[3]{-x} -1](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%5B3%5D%7B-x%7D%20-1)
Step-by-step explanation:
Consider graph of the parent function (red curve in attached diagram)
![g(x)=\sqrt[3]{x}](https://tex.z-dn.net/?f=g%28x%29%3D%5Csqrt%5B3%5D%7Bx%7D)
First, multiply it by -1 to get function
![h(x)=-\sqrt[3]{x}](https://tex.z-dn.net/?f=h%28x%29%3D-%5Csqrt%5B3%5D%7Bx%7D)
Then translate the graph of the function h(x) 1 unit down, then you'll get the function
![f(x)=-\sqrt[3]{x} -1\\ \\ \text{or}\\ \\f(x)=\sqrt[3]{-x} -1](https://tex.z-dn.net/?f=f%28x%29%3D-%5Csqrt%5B3%5D%7Bx%7D%20-1%5C%5C%20%5C%5C%20%5Ctext%7Bor%7D%5C%5C%20%5C%5Cf%28x%29%3D%5Csqrt%5B3%5D%7B-x%7D%20-1)
The graph of the function f(x) is represented by the blue curve in attached diagram
Answer:
Answer will 19/4 hope it helps
Recall that the volume of a cube equals (side)^3. We can create an equation to model this.
1728 in^3 = (side)^3
We can get the cube root of both sides.
12 in = side
Each side is 12 inches long.