Answer:
2,7 m
Explanation:
You can solve this doing an energy balance:
![m*g*h-\frac{1}{2} *m*v^{2} =41,7[J]](https://tex.z-dn.net/?f=m%2Ag%2Ah-%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%3D41%2C7%5BJ%5D)
Solving this equation to get h:

Replacing the values and solving brings to 2,7 m
Answer:
See explanation
Explanation:
When a beaker of ethanoic acid is placed in the refrigerator, its temperature drops and the vessel feels cool.
Now, when we mix ethanoic acid and sodium carbonate, an endothermic reaction occurs, fizzing is observed as carbon dioxide is given off and heat is lost to the surroundings causing the reaction vessel to feel cool to touch.
The difference between putting ethanoic acid in the refrigerator and adding sodium carbonate to the solution is that, in the former, no new substance is formed. The substance remains ethanoic acid when retrieved from the refrigerator. In the later case, new substances are formed. The substance is no more ethanoic acid because a chemical reaction has taken place.
To determine mass of the given number of atoms of mercury, we need a factor that would relate the number of atoms to number of moles. In this case, we use the Avogadro's number. It is a <span>number that represents the
number of units in one mole of any substance. This has the value of 6.022 x
10^23 units / mole. The number of units could be atoms, molecules, ions or electrons. To convert into mass, we use the given amu of mercury since it is equal to grams per mole. We calculate as follows:
</span>3.0 x 10^10 atoms ( 1 mol / 6.022 x 10^23 atoms ) ( 200.59 g / 1 mol ) = 9.99x10^-12 g Hg
Answer:
The answer to your question is 24.325
Explanation:
Data
Magnesium-24 Abundance = 78.70%
Magnesium-25 Abundance = 10.13%
Magnesium-26 Abundance = 11.17%
Process
1.- Convert the abundance to decimals
Magnesium-24 Abundance = 78.70/100 = 0.787
Magnesium-25 Abundance = 10.13/100 = 0.1013
Magnesium-26 Abundance = 11.17/100 = 0.1117
2.- Write an equation
Average atomic mass = (Atomic mass-1 x Abundance 1) + (Atomic mass 2 x
Abundance-2) + (Atomic mass 3 x Abundance 3)
3.- Substitution
Average atomic mass = (24 x 0.787) + (25 x 0.1013) + (26 x 0.1117)
4.- Simplification
Average atomic mass = 18.888 + 2.533 + 2.904
5.- Result
Average atomic mass = 24.325