Answer:
1.48×10⁻⁷ Newtons
Explanation:
From the question,
According to newton's law of universal gravitation.
F = Gmm'/r²........................ Equation 1
F = gravitational force, G = gravitational constant, m = mass of the first ball, m' = mass of the second ball, r = distance between the balls.
Given: m = m' = 8 kg, r = 17 cm = 0.17 m,
Constant : G = 6.67×10⁻¹¹ Nm²/kg²
Substitute these values into equation 1
F = (6.67×10⁻¹¹×8×8)/(0.17²)
F = 1.48×10⁻⁷ N
Answer:
so the speed will increase by 1.44 times then the initial speed if the distance is increased to double
Explanation:
As we know that the air friction or resistance due to air is neglected then we can use the equation of kinematics here

since we released it from rest so we have

so here we have

now if the distance is double then we have

now from above two equations we can say that

so the speed will increase by 1.44 times then the initial speed if the distance is increased to double
Mark Brainliest please
Friction is a nonconservative force. Therefore work done against friction cannot be stored as potential energy and later converted back to kinetic the way work against gravity can.
Gravity always pulls objects such as a desk, book or person down. Thus, when you jump, gravity causes you to land on the ground. Friction, however, doesn't pull objects down. ... Instead friction occurs when something like a machine or individual pulls a sliding object in the opposite direction of another object.
Friction and gravity exist in every aspect of a person’s life. For example, almost every movement you make, such as walking and running, involves friction. When you throw a ball up, gravity causes the ball to fall down. A person sliding a book across a table creates friction. Nevertheless, differences between gravity and friction also exist. Force affects gravity and friction in different ways.