Over time, the particles in the suspension would settle to the bottom when the movement keeping them suspended fades away. This will not happen with a solution.
Answer:
Volume of dry gas at STP = 0.432 liters or 432 ml
Explanation:
Given:
Pressure (P) = 740 mmHg - 24 mmHg = 716 mmHg
Temperature (t) = 25 degrees C + 273 K = 298 K
500 ml = 0.5 l
Find:
Volume of dry gas at STP
Computation:
[P1][V1] / T1 = [P2][V2] / T2
[716][0.5] / 298 K = [760][ x Liters] / 273 K
x = 0.432 Liters
Volume of dry gas at STP = 0.432 liters or 432 ml
Answer:
D. Grams liquid x mol/g x delta Hfreezing
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to reason that the stoichiometry used to calculate energy released when a mass of liquid freezes, involves the grams of the liquid, the molar mass of the liquid, as given in all the group choices, and the enthalpy of freezing because that is the process whereby a liquid goes solid.
In such a way, we infer that the correct factor would be D. Grams liquid x mol/g x delta Hfreezing which sometimes is the negative of the enthalpy of fusion as they are contrary processes.
Regards!