Answer:
Number of moles = 0.0005 mol.
Explanation:
Given data:
pH = 3
Volume of solution = 500 mL
Number of moles = ?
Solution:
HCl dissociate to gives H⁺ and Cl⁻
HCl → H⁺ + Cl⁻
It is known that,
pH = -log [H⁺]
3 = -log [H⁺]
[H⁺] = 10⁻³ M
[H⁺] = 0.001 M
Number of moles of HCl:
Molarity = number of moles / Volume in litter
Number of moles = Molarity × Volume in litter
Number of moles = 0.001 mol/L × 0.5 L
Number of moles = 0.0005 mol
It is correct, next time re-check your answer and don't second guess yourself. ;3
65 grams of HCl = 65/36.5 moles of HCl = 1.78 moles
1.78 moles of HCl dissolved to make a 5 litres of solution has a concentration of 1.78/5 = 0.36 mol/dm^3 (Note: 1 litre = 1 cubic decimetre)
In a strong acid, such as HCl, [H+] = [acid], so [H+] = 0.36
To calculate pH, we have to take the negative logarithm of the concentration of protons
So, -log(0.36) = 0.45
Hope I helped!! xx
Decay constant, proportionality between the size of a population of radioactive atoms and the rate at which the population decreases because of radioactive decay.
<h3>What is decay constant value?</h3>
The rate of disintegration is proportional to the number of atoms at any point in time and the constant of proportionality is called the radioactivity decay constant. The radioactive decay constant for Radium B is approximately 4.3 × 10−4 s−1.
<h3>What is decay constant unit?</h3>
Definition. The decay constant (symbol: λ and units: s−1 or a−1) of a radioactive nuclide is its probability of decay per unit time. The number of parent nuclides P therefore decreases with time t as dP/P dt = −λ. The energies involved in the binding of protons and neutrons by the nuclear forces are ca.
Learn more about decay constant here:
<h3>
brainly.com/question/16623902</h3><h3 /><h3>#SPJ4</h3>