Explanation:
1 literThe total of water is equal to 1000.0 g of water
we need to find the molality of a solution containing 10.0 g of dissolved in Na₂S0₄1000.0 g of water
1. For that find the molar mass
Na: 2 x 22.99= 45.98
S: 32.07
O: 4 x 16= 64
The total molar mass is 142.05
We have to find the number of moles, y
To find the number of moles divide 10.0g by 142.05 g/mol.
So the number of moles is 0.0704 moles.
For the molarity, you need the number of moles divided by the volume. So, 0.0704 mol/1 L.
The molarity would end up being 0.0704 M
The molality of a solution containing 10.0 g of Na2SO4 dissolved in 1000.0 g of water is 0.0704 Mliter
Answer:
1.81 x 10²⁴ atoms
Explanation:
To find the number of atoms in the given number of moles, we need to understand that every substance contains the Avogadro's number of particles.
More appropriately, a mole of any substance will contain the Avogadro's number of particles which is 6.02 x 10²³ atoms
So;
If 1 mole of a substance = 6.02 x 10²³ atoms;
3 mole of MgCl₂ will contain 3 x 6.02 x 10²³ = 1.81 x 10²⁴ atoms
Answer:
I think the answer is option B
The currents of the mantle pull the crust above it through drag. The plates, therefore, move on top of the mantle. At San Andreas fault, the North American Plate met the Pacific plate. However, due to the presence of the Farallon plate that was disappearing into the mantle in a subduction zone, the Pacific and North American plates movements changed in their configuration. The two plates now move past each other. The San Andreas fault is, therefore, a strike-slip fault.