Answer:
Steel
Explanation:
Mass is density times volume.
m = ρV
Since they have the same size and shape, they have the same volume.
Steel has a higher density than Styrofoam, so at the same volume, the steel ball will have more mass.
Answer:
5880lb-ft of work is done
Explanation:
The length of the heavy rope is given as 60ft and the weight per length is 0.7lb/ft.
Therefore, the total weight of the heavy rope is
60×0.7 =42lb.
The work done in pulling the heavy rope to the top of the building is w = Fd.
Where
F is force is measured in pounds;42lb
d is distance through which the heavy rope is to be pulled measured in feet; 140ft
w= 42lb×140ft= 5880lb-ft
Kinetic energy = (1/2) (mass) (speed)²
Before slowing down, the car's speed is 25 m/s,
and its kinetic energy is ...
(1/2) (1,500 kg) (25 m/s)²
= (1/2) (1,500 kg) (625 m²/s²)
= 468,750 joules .
After slowing down, the car's speed is 15 m/s,
and its kinetic energy is ...
(1/2) (1,500 kg) (15 m/s)²
= (1/2) (1,500 kg) (225 m²/s²)
= 168,750 joules.
The car lost (468,750 - 168,750) = 300,000 joules of K.E.
The law of Conservation of Energy says:
That 300,000 joules had to go somewhere.
If it's a standard, gas-powered car, then the kinetic energy got
put into the brakes. The energy turned into heat, and the heat
was carried off in the air.
If it's a more modern electric or hybrid car, then the kinetic energy
spun the wheel motors, turning them temporarily into electrical
generators. The generators converted the kinetic energy into
electrical energy, which got put back into the car's batteries, and
could be used again. That's why electric cars use less gas.
Answer:
Chromatic aberration is a visual effects that distorts the image. It occurs when different wavelengths of light are focused at different distances from the lens as a result of which light passing through the prism bends and the color wavelengths are separated. This is called chromatic aberration.
This is because the accerelation due to gravity on earth is 9.8m/s2 and to find the weight you multiply 12 by 9.8 which=117.6N. Therefore the force of gravity on planet A is equal to the force of gravity on Earth.