Answer:
Explanation:
The volume of a sphere is:
V = 4/3 * π * a^3
The volume charge density would then be:
p = Q/V
p = 3*Q/(4 * π * a^3)
If the charge density depends on the radius:
p = f(r) = k * r
I integrate the charge density in spherical coordinates. The charge density integrated in the whole volume is equal to total charge.





Since p = k*r
Q = p*π^2*r^3 / 2
Then:
p(r) = 2*Q / (π^2*r^3)
Answer:
Chess
Explanation:
Chess is considered a sport
Answer:
See Explanation
Explanation:
The principle of conservation of energy states that; energy can neither be created nor destroyed but is converted from one form to another.
In view of this principle, Ella can not be correct when she says that a lot of energy has disappeared. The use of the term "disappeared" connotes the idea that the energy no longer exists which does not happen.
Hence, energy can not "disappear" from hot water rather the energy in the water may be transferred to the surroundings.
Answer:
Explanation:
The energy of Mass-Spring System the sum of the potential energy of the block plus the kinetic energy of the block:

Where:

There are two cases, the first case is when the spring is compressed to its maximum value, in this case the value of the kinetic energy is zero, since there is no speed, so:

The second case is when the block passes through its equilibrium position, in this case the elastic potential energy is zero since
, so:

Now, let's find the energy of the system when the block is replaced by one whose mass is twice the mass of the original block using the previous data:

Where in this case:

Therefore:

Answer:
c. the volume of the part of the ship that lies below the water's surface.
Explanation:
As stated in the problem, Archimedes' Principle tells us that that buoyant force on an object is equal to the weight of fluid it displaces. The volume of water that a ship displaces is the volume it occupies below the surface.