<h3>Hello there!</h3>
Here, you are looking for the amount of heat put in for water, at a mass of 187 grams, to change by 80 degrees.
The equation commonly accepted to find the answer to questions like these is the specific heat formula.
The equation is Q = mc∆T, where Q is the amount of energy put in to raise the temperature by a certain amount, m is the mass, c is the specific heat capacity, and ΔT is the amount of temperature change.
The information given:
m = 187 grams
c = specific heat capacity of water, or in this case 1 calorie, or 4.184 joules (which is what we will be using)
ΔT = 80 degrees
Now just plug everything in to solve.
Q = 187 * 4.184 * 80
Q = 62592.64
So you have your answer: 62592.64 joules.
Hope this helped!
Answer:
(a) 70cm³
(b) 805 grams
Explanation:
(a) V = L×B×H
= 7cm×5cm×2cm
= 35cm×2cm
= 70cm³
(b) Mass = Volume × Density
= 70cm³ × 11.5g/cm³
= 805 grams
Answer:
d= 7.32 mm
Explanation:
Given that
E= 110 GPa
σ = 240 MPa
P= 6640 N
L= 370 mm
ΔL = 0.53
Area A= πr²
We know that elongation due to load given as



A= 42.14 mm²
πr² = 42.14 mm²
r=3.66 mm
diameter ,d= 2r
d= 7.32 mm
Electrons are important to the electric current because they are able to move from one atom to another. When an atom loses an electron, it becomes positively charged and when an atom gains an electron, it becomes negatively charged.