<span>The answer is simply that evolution takes a long time to make big changes. To see evidence of that, you have to look at older records. You have to look at fossils.</span>
Answer:
P = 1000000[Pa] = 1000 [kPa]
Explanation:
To solve this problem we must use the definition of pressure, which is equal to the relationship of force over area.

where:
P = pressure [Pa] (units of pascals)
F = force = 100 [N]
A = area = 100 [mm²]
But first we must convert the units from square millimeters to square meters.
![A=100[mm^{2}]*\frac{1^{2} m^{2} }{1000^{2}mm^{2} } =0.0001[m^{2} ]](https://tex.z-dn.net/?f=A%3D100%5Bmm%5E%7B2%7D%5D%2A%5Cfrac%7B1%5E%7B2%7D%20m%5E%7B2%7D%20%7D%7B1000%5E%7B2%7Dmm%5E%7B2%7D%20%20%7D%20%3D0.0001%5Bm%5E%7B2%7D%20%5D)
Now replacing:
![P=100/0.0001\\P=1000000[Pa]](https://tex.z-dn.net/?f=P%3D100%2F0.0001%5C%5CP%3D1000000%5BPa%5D)
The variation of water depth at spreading centers (ridges) controlled by isostasy as convective cooling cools the rocks much more effectively the than heat conduction.
<h3>What is convective heat transfer?</h3>
When heat transfer takes place between the two fluids in direct or indirect contact.
The lithosphere cools when it moves away from the ridge axis by sea floor spreading. The cooler rocks have low density, so the sea floor gets deeper as the lithosphere gets more dense.
Thus, the convective cooling cools the rocks much more effectively the than heat conduction.
Learn more about convective heat transfer
brainly.com/question/10219972
#SPJ1