Answer: The correct answer is "Number of rope segments supporting the load".
Explanation:
Mechanical advantage: It is defined as the ratio of the force produced by a machine to the force applied on the machine. The ideal mechanical advantage of a machines is mechanical advantage in the absence of friction.
The ideal mechanical advantage of a pulley system is equal to the number of rope segments which is supporting the load. More the rope segments, It is more helpful to do the lifting the work.
It means that less force is needed for this task to complete.
Therefore, the correct option is (C).
In a series circuit the total current is the same throughout resistors and so:

The voltage is distributed throughout the resistors and so:

and the total resistance can be calculated by adding up the resistors resistance:

First thing is to calculate the total resistance and so:

And by Omh's law V=IR we have:

And so the total current of the circuit is 1.2 amps i.e. 1.2 A.
Answer:
The tangential speed of the tack is 6.988 meters per second.
Explanation:
The tangential speed experimented by the tack (
), measured in meters per second, is equal to the product of the angular speed of the wheel (
), measured in radians per second, and the distance of the tack respect to the rotation axis (
), measured in meters, length that coincides with the radius of the tire. First, we convert the angular speed of the wheel from revolutions per second to radians per second:


Then, the tangential speed of the tack is: (
,
)


The tangential speed of the tack is 6.988 meters per second.