1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nata0808 [166]
3 years ago
9

A brick falls from a wall to the ground 3.42 m below. How much time will it take to

Physics
1 answer:
ddd [48]3 years ago
6 0

Answer:

The time taken by the brick to hit the ground, t = 0.84 s

Explanation:

Given that,

A brick falls from a height, h = 3.42 m

The initial velocity of the brick is zero.

Since the brick is under free-falling. The time equation of a free-falling body when the displacement is given is

                                     t = \sqrt{2h/g}

where,

                                 h - height from surface in meters

                                 g - acceleration due to gravity

on substituting the values in the above equation,

                                 t =  \sqrt{2X3.14/9.8}

                                   = 0.84 s

Hence, time taken by the brick to hit the ground is t = 0.84 s

You might be interested in
A carbon rod with a radius of 1.9 mm is used to make a resistor. What length of the carbon rod should be used to make a 3.7 Ω re
vladimir2022 [97]

Answer:

Length = 2.32 m

Explanation:

Let the length required be 'L'.

Given:

Resistance of the resistor (R) = 3.7 Ω

Radius of the rod (r) = 1.9 mm = 0.0019 m [1 mm = 0.001 m]

Resistivity of the material of rod (ρ) = 1.8\times 10^{-5}\ \Omega\cdot m

First, let us find the area of the circular rod.

Area is given as:

A=\pi r^2=3.14\times (0.0019)^2=1.13\times 10^{-5}\ m^2

Now, the resistance of the material is given by the formula:

R=\rho( \frac{L}{A})

Express this in terms of 'L'. This gives,

\rho\times L=R\times A\\\\L=\frac{R\times A}{\rho}

Now, plug in the given values and solve for length 'L'. This gives,

L=\frac{3.7\ \Omega\times 1.13\times 10^{-5}\ m^2}{1.8\times 10^{-5}\ \Omega\cdot m}\\\\L=\frac{4.181}{1.8}=2.32\ m

Therefore, the length of the material required to make a resistor of 3.7 Ω is 2.32 m.

5 0
3 years ago
What describes the movement of a fluid during convection?
damaskus [11]
Convection is the movement<span> of groups of molecules within </span>fluids<span> such as gases and liquids, including molten rock (rheid).</span>
5 0
3 years ago
When work is done, an object changes its
STatiana [176]

Answer:

energy is added to it

Explanation:

8 0
3 years ago
Michael Jordan, el célebre basquetbolista, ganó el torneo de clavadas de la NBA en 1988. Para lograr la hazaña saltó 1.35 metros
kozerog [31]

(a) 0.40 s

First of all, let's find the initial speed at which Jordan jumps from the ground.

The maximum height is h = 1.35 m. We can use the following equation:

v^2-u^2=2gh

where

v = 0 is the velocity at the maximum height

u is the initial velocity

g=-9.8 m/s^2 is the acceleration of gravity

Solving for u,

u=\sqrt{-2gh}=\sqrt{-2(-9.8)(1.35)}=5.14 m/s

The time needed to reach the maximum height can now be found by using the equation

v=u+gt

Solving for t,

t=\frac{v-u}{g}=\frac{0-5.14}{-9.8}=0.52s

Now we can find the velocity at which Jordan reaches a point 20 cm below the maximum height, so at a height of

h' = 1.35 - 0.20 = 1.15 m

Using again the equation

v'^2-u^2=2gh'

we find

v'=\sqrt{u^2+2gh}=\sqrt{5.14^2+2(-9.8)(1.15)}=1.97 m/s

And the corresponding time is

t'=\frac{v'-u}{g}=\frac{1.97-5.14}{-9.8}=0.32s

So the time to go from h' to h is

\Delta t = t-t'=0.52-0.32=0.20 s

And since we have also to take into account the fall down (after Jordan reached the maximum height), which is symmetrical, we have to multiply this time by 2 to get the total time of permanence in the highest 20 cm of motion:

\Delta t=2\cdot 0.20 = 0.40 s

(b) 0.08 s

This part is easier since we need to calculate only the velocity at a height of h' = 0.20 m:

v'^2-u^2=2gh'

v'=\sqrt{u^2+2gh}=\sqrt{5.14^2+2(-9.8)(0.20)}=4.74 m/s

And the corresponding time is

t'=\frac{v'-u}{g}=\frac{4.74-5.14}{-9.8}=0.04s

So this is the time needed to go from h=0 to h=20 cm; again, we have to take into account the motion downwards, so we have to multiply this by 2:

\Delta t = 2\cdot 0.04 =0.08 s

8 0
3 years ago
I need help with question #8 please!!
otez555 [7]

Answer: 3.1158

Explanation: THERE

3 0
2 years ago
Other questions:
  • A farsighted girl has a near point at 2.0 m but has forgotten her glasses at home. The girl borrows eyeglasses that have a power
    14·1 answer
  • Match the words in the left column to the appropriate blanks in the sentences on the right. Make certain each sentence is comple
    10·2 answers
  • The kinetic energy of an object is equal to the?
    15·1 answer
  • An object, initially at rest moves 250m in 17s. What is it's acceleration?
    6·1 answer
  • Explain why the output work for any machine cant be greater than the input work
    9·1 answer
  • a 10.0kg object moving at 5.00 m/s experiences a force of 20.0N. How far must it be pushed by this force for its speed to reach
    15·1 answer
  • What is the displacement of a student who walks 12 m North, 5 m West, 3 m South,
    10·1 answer
  • 1- Kilogram is a unit of _____________ in ______________ system ?
    9·1 answer
  • Which equations are equivalent to 3/4+m=-7/4? Select three options.
    14·1 answer
  • 1. Is the image projected on a movie screen real or virtual? What about the image of yourself seen in a bathroom mirror?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!