Answer:
Explanation:
The energy
of a photon is given by:
(1)
Where:
is the Planck constant
is the frequency light
On the other hand, there is an inverse relationship between
and the wavelength
:
(2)
Where:
is the speed of light
is the wavelength
Substituting (2) in (1):
(3)
Finally:
This is the energy of a photon of blue light, in Joules.
The sketch of the system is: two strings, 1 and 2, are attached to the ceiling and to a third string, 3.The third string holds the bag of cement.
The free body diagram of the weight with the string 3, drives to the tension T3 = weihgt => T3 = 325 N
The other free body diagram is around the joint of the three strings.
In this case, you can do the horizontal forces equilibrium equation as:
T1* cos(60) - T2*cos(40) = 0
And the vertical forces equilibrium equation:
Ti sin(60) + T2 sin(40) = T3 = 325 N
Then you have two equations with two unknown variables, T1 and T2
0.5 T1 - 0.766 T2 = 0
0.866 T1 + 0.643T2 = 325
When you solve it you get, T1 = 252.8 N and T2 = 165 N
Answer: T1 = 252.8 N, T2 = 165N, and T3 = 325N
Set this up as a proportion.
.002 m^3/20 degrees = x/50 degrees
solve for x
x = .005 m^3
If you found this helpful, please brainliest me!
The answer you are looking for is A
Answer:
B, C and E
Explanation:
The unit of resistance in the international system is the Ohm, the equation that describes the resistance is:

Where (l) is for lenght of the wire, (S) is the area and (p) its the constant associated to the conductor.
It's related by the Ohm's Law:
