Given that,
Time = 0.5 s
Acceleration = 10 m/s²
(I). We need to calculate the speed of apple
Using equation of motion

Where, v = speed
u = initial speed
a = acceleration
t = time
Put the value into the formula


(III). We need to calculate the height of the branch of the tree from the ground
Using equation of motion

Put the value into the formula


(II). We need to calculate the average velocity during 0.5 sec
Using formula of average velocity


Where,
= final position
= initial position
Put the value into the formula


Hence, (I). The speed of apple is 5 m/s.
(II). The average velocity during 0.5 sec is 2.5 m/s
(III). The height of the branch of the tree from the ground is 1.25 m.
As the Earth rotates, it also moves, or revolves, around the Sun. ... As the Earth orbits the Sun, the Moon orbits the Earth. The Moon's orbit lasts 27 1/2 days, but because the Earth keeps moving, it takes the Moon two extra days, 29 1/2, to come back to the same place in our sky.
Answer:
20.85 years
Explanation:
2.61 km = 2610 m
2.07 kW = 2070 W
First we need to calculate the potential energy required to take m =
kg of rain cloud to an altitude of 2610 m is

With a P = 2070 W power pump, this can be done within a time frame of

or 658037739/(60*60) = 182788 hours or 182788 / 24 = 7616 days or 7616 / 365.25 = 20.85 years
Answer:
481.76 J/mol
133.33 K
Explanation:
= Avogadro's number = 
Change in enthalpy is given by

Entropy is given by

Latent heat of fusion is given by

The latent heat of fusion is 481.76 J/mol
Melting point is given by

Melting occurs at 133.33 K