First we must understand the balanced chemical equation:
Pb(NO3)2 + K2CrO4 ==> PbCr04 + 2KNO3
This shows us that two moles of potassium nitrate are formed from 1 mole of lead nitrate or potassium chromate solution. The next step is to find out how many moles of each reactant there are. Note the word Molar is a concentration that simply means moles per liter.
2.25L of 1.5M lead nitrate = 2.25x1.5 = 3.375 moles of lead nitrate
1.15L of 2.75M potassium chromate = 1.15x2.75 = 3.1625 moles
The important part here is to see that the number of moles of the reactants are different. We know the number of moles of products will be dependent on the number of moles of reactants, and in this case there is less potassium chromate than there is lead nitrate, so this is the limiting factor as there is a one to one relationship with both reactants. Therefore, the number of moles of potassium nitrate produced is 2 x number of moles of potassium chromate. i.e. 6.325 moles of potassium nitrate is liberated.
To work out the number of grams, we must find the molar mass (the mass of one mole) of KNO3, which is the sum of the molar mass of each of its component atoms that make up the molecule. I've looked this up as 101.1 grams per mole.
Now we simply times the molar mass by the number of moles to yield the final grams liberated: 6.325 moles x 101.1 grams/mole = 639.4 grams of potassium nitrate is liberated from this reaction.
The correct answer is T helper cells. <span>T helper cells are important because they have the ability to stimulate other cells to kill the foreign particles (viruses, bacteria, fungi, parasites).T helper cells help other cells in the immune response by recognizing foreign antigens and by secreting cytokines that then activate T and B cells.</span>
Answer:
- Protozoans → would not have survived because they have no way to produce their own food → Heterotrophs
- Algae → would have survived without this food source → Heterotrophs
Explanation:
The protist kingdom is composed of two main groups. The principal difference between them is that algae can produce their own food, while protozoans need to ingest other organisms or organic molecules to survive.
- Algaes are autotroph
- Protozoans are heterotroph
<u>Protozoans</u>:
Microscopic unicellular organisms, eukaryotic and heterotrophs -predators or detritivores-. Most of them are aquatic free-living organisms, but some species are parasites. They feed on<u> bacteria</u>, other organic wastes, and other microscopic organisms. The phagocytosis process is normally used to ingest the food, invaginating their cell membrane.
<u>Algae</u>:
Eukaryotic micro- or macroscopic organisms. Autotroph and photosynthetic. They might be either unicellular or pluricellular. They use sunlight to synthesize organic matter from water, CO₂, and mineral salts. Unicellular ones can be free-living or associate with others to form colonies. They are part of the phytoplankton and are ingested by heterotrophic organisms. Pluricellular algae do not create real tissues but they compose a tale. The depth at which they inhabit depends on the pigments they produce. All of them inhabit fresh or sea waters.