Answer:
well, as u can tell the top layer will always be the youngest layer aka the newest layer. The farther u go down the older the layers get. So the deeper u dig the farther back in time we see.
Explanation:
Here we have mass that moves at ceratin speed. This means that we have momentum. The law that must be observed is law of conservation of momentum. It states that momentum before certain event is equal to a momentum after that event. Here we have three masses so we can write this as:

Before the firecracker blows a coconut does not move, so left side is equal to 0:

We know that m1=m2=m and m3=2m. Also we are asked to find v3f so we can rewrite formula:

We must take in consideration that two parts with same mass do not move in same direction. The center of mass of these two parts moves between them at angle of 45° with respect to both south and west. The speed of a center of mass is:

This speed we can insert into formula for v3f:

We can see that part of a coconut with biggest mass has same speed as center of mass of two other parts. Negative sign shows that direction is opposite to direction of two pats. Biggest part moves towards north-east.
Answer:
Explanation:
There will be reaction force by each vertical post on horizontal plank . Let it be R₁ and R₂ . R₁ is reaction force by the post nearer to woman
Taking torque of all forces about the end far away from the woman
Torque by reaction force = R₁ x 5.5
= 5.5 R₁ upwards
Torque by weight of woman in opposite direction , downwards
= - 804 x ( 5.5 - 1.55 )
= - 3175.8
Torque by weight of the plank in opposite direction , downwards .
= - 27 x 5.5 / 2
= - 74.25
Torque by R₂ will be zero as it passes through the point about which torque is being taken .
Total torque
= 5.5 R₁ - - 3175.8 - - 74.25 = 0 ( For equilibrium )
5.5 R₁ = 3250
R₁ = 590.9 N .
Answer:
<h2>
650W/m²</h2>
Explanation:
Intensity of the sunlight is expressed as I = Power/cross sectional area. It is measured in W/m²
Given parameters
Power rating = 6.50Watts
Cross sectional area = 100cm²
Before we calculate the intensity, we need to convert the area to m² first.
100cm² = 10cm * 10cm
SInce 100cm = 1m
10cm = (10/100)m
10cm = 0.1m
100cm² = 0.1m * 0.1m = 0.01m²
Area (in m²) = 0.01m²
Required
Intensity of the sunlight I
I = P/A
I = 6.5/0.01
I = 650W/m²
Hence, the intensity of the sunlight in W/m² is 650W/m²
Answer:
x = 17.88[m]
Explanation:
We can find the components of the initial velocity:
![(v_{x})_{o} = 13.3*cos(41.5)=9.96[m/s]\\(v_{y})_{o} = 13.3*sin(41.5)=8.81[m/s]](https://tex.z-dn.net/?f=%28v_%7Bx%7D%29_%7Bo%7D%20%20%3D%2013.3%2Acos%2841.5%29%3D9.96%5Bm%2Fs%5D%5C%5C%28v_%7By%7D%29_%7Bo%7D%20%20%3D%2013.3%2Asin%2841.5%29%3D8.81%5Bm%2Fs%5D)
We have to remember that the acceleration of gravity will be worked with negative sign, since it acts in the opposite direction to the movement in direction and the projectile upwards.
g = - 9.81[m/s^2]
Now we must find the time it takes for the projectile to hit the ground, as the problem mentions that it does not impact on the board.
![y=y_{o} +(v_{y} )_{o} *t-0.5*g*(t)^{2} \\0=1.9+(8.81*t)-(4.905*t^{2})\\-1.9=8.81*t*(1-0.5567*t)\\t=0\\t=1.796[s]](https://tex.z-dn.net/?f=y%3Dy_%7Bo%7D%20%2B%28v_%7By%7D%20%29_%7Bo%7D%20%2At-0.5%2Ag%2A%28t%29%5E%7B2%7D%20%5C%5C0%3D1.9%2B%288.81%2At%29-%284.905%2At%5E%7B2%7D%29%5C%5C-1.9%3D8.81%2At%2A%281-0.5567%2At%29%5C%5Ct%3D0%5C%5Ct%3D1.796%5Bs%5D)
With this time we can calculate the horizontal distance:
![x=(v_{x})_{o} *t\\x=9.96*1.796\\x=17.88[m]](https://tex.z-dn.net/?f=x%3D%28v_%7Bx%7D%29_%7Bo%7D%20%2At%5C%5Cx%3D9.96%2A1.796%5C%5Cx%3D17.88%5Bm%5D)