By unit conversion, the aspirin contains 7.72 grains.
We need to know about unit conversion to solve this problem. The unit conversion can be used to convert a unit to another unit. It can be defined as
a = xb
where a is unit a, b is unit b and x is the constant of conversion.
From the question above, we know that
m = 0.5 gram
unit conversion
(1 grain = 64.8 mg)
Convert the unit conversion to 1 mg
1 grain = 64.8 mg
1/64.8 grain = 64.8/64.8 mg
1 mg = 1/64.8 grain
Convert the aspirin mass to grain
m = 0.500 g
m = 0.5 x 10³ mg
m = 0.5 x 10³ x 1/64.8 grain
m = 7.72 grain
Find more on unit conversion at: brainly.com/question/4158962
#SPJ4
Answer:
Before we get into the first law of thermodynamics we need to understand the relation between heat and work and the concept of internal energy. Just like mass, energy is always conserved i.e. it can neither be created nor destroyed but it can be transformed from one form to another. Internal energy is a thermodynamic property of the system that refers to the energy associated with the molecules of the system which includes kinetic energy and potential energy.
Whenever a system goes through any change due to interaction of heat, work and internal energy, it is followed by numerous energy transfer and conversions. However, during these transfers, there is no net change in the total energy.
Similarly, if we look at the first law of thermodynamics it affirms that heat is a form of energy. What it means is that the thermodynamic processes are governed by the principle of conservation of energy. The first law of thermodynamics is also sometimes referred to as the Law of Conservation of Energy
Explanation:
Answer:
Explanation:
This question seeks to test the knowledge of separation techniques.
From the narration in the question, the first separation to be done is the removal of Iron fillings by the use of magnet (magnetic separation). Since Iron is magnetic, the iron fillings will be attracted by the magnet hence removing the iron fillings from the mixture.
The second constituent to be removed will be the copper pieces by the use of a sieve (sieving). Copper pieces have relatively larger sizes than sand and common salt, hence a sieve (which separates particles based on size) can be used to remove the copper pieces from the mixture.
What will be left in the mixture after the processes above will be salt and water. This mixture will have to be dissolved in water; the salt will dissolve in water while the sand will not. After which, filtration will be done to remove the sand which will be collected on the filter paper as filtride and the salt solution will pass through the filter paper as filtrate.
The salt solution can then be evaporated to dryness to retrieve the solid salt from the solution.
The amount of salt in the mixture can then be measured using a weighing balance.
Some of safety measures to be taken during the course of this experiment includes performing the experiment in an airtight and controlled environment. Lab coat and hand gloves should be worn during the course of the experiment. The evaporation to dryness should not be done close to an inflammable material/substance