Answer:
The nervous system releases neurotransmitters at synapses at specific target cells & The endocrine system reacts more slowly to stimuli, often taking seconds to days.
Explanation:
The nervous system is very specific with where the neurotransmitters go so they will affect target cells. The endocrine system is slower than the nervous system because the hormones travel through the blood so it takes much longer to reach the designated area.
Answer: The structure and curvature of the Earth results in beams of sunlight glancing off the equator and reaching other areas of the Earth. This means that the areas at the equator receive more energy as the sun's rays hit them directly. :)
Answer:
Parasitic
Explanation:
The species that is described is a parasitic species. The reason why it will fall into this category is that its key feature is that it is entirely dependent on other organisms for its food. This type of species are not able to produce food for themselves, nor are able to get it from the environment, which is way they have evolved in a manner to use the other organisms. They find a host organisms, attach to it, and then they are extracting the nutrients out of that organism, thus classical parasitism. The extraction of the nutrients can be so severe that the parasitic species can actually kill systemically its host.
Nucleotide bases are added to DNA strands in a 5' to 3' direction.
What is DNA replication?
When a cell divides, DNA copies itself through a process called replication.
- Generally speaking, DNA replication involves uncoiling the helix, strand separation by rupturing the hydrogen bonds between the complementary strands, and synthesis of two new strands through complimentary base pairing.
- The origin of replication, which is a precise location in the DNA, is where replication starts.
- From the point of origin, DNA replication is bidirectional.
- The two parent DNA strands unwind and split apart at the origin of replication to generate two "Y-shaped" replication forks in order to start DNA replication.
- These unwinding enzymes are known as DNA helicases.
- The real location of DNA copying is at these replication forks.
- Proteins that destabilize helices bind to the single-stranded areas to prevent the two strands from rejoining.
- To reduce stress on the helical molecule during replication, enzymes known as topoisomerases cause breaks in the DNA and then reunite them.
- The hydrogen bonding of free DNA nucleotides with those on each parent strand results in the formation of new complementary strands as the strands continue to unwind and split in both directions around the entire DNA molecule.
- The new nucleotides are joined by DNA polymerases using phosphodiester bonds as they align themselves opposite each parent strand using hydrogen bonds.
- Deoxynucleotide triphosphates, which are made up of a nitrogenous base called deoxyribose and three phosphates, are the actual nucleotides that are aligning through complementary base pairing.
- Two of the phosphates are withdrawn to provide energy for bonding as the phosphodiester bond forms between the 3' OH of the previous nucleotide in the DNA strand and the 5' phosphate group of the next nucleotide.
- In the end, two identical DNA molecules are created when each parent strand acts as a template for the synthesis of a complementary copy of itself.
Hence, nucleotide bases are added to DNA strands in a 5' to 3' direction.
To learn more about DNA replication click on the link
brainly.com/question/21265857
#SPJ1
Answer:
It helps in the packaging and distribution in cells.
Explanation: