Answer:
Option C
Explanation:
The answer is option C or "The amount of time it takes to rotate around it's axis is the same amount of time it takes to revolve around Earth."Remember that the Earth and the Moons amount of time to make a full rotation is almost in sync and they're two sides of the moon, one side we do not see and that's because that side is currently faced away from the Earth which is called the dark side of the moon. Each side has two weeks oh night, and two weeks of day because of how long it takes the moon to revolve, so while we have a side towards the Earth which is illuminated by the sun we have another pointing away in the dark.
Hope this helps.
To solve this we assume that the gas inside the
balloon is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 = P2V2
V2 = P1V1 / P2
V2 = 0.865 x 1.25 / 0.820
V2 = 1.32 L
[H_{3}O^{+}] = 0.00770 M
The equilibrium equation representing the dissociation of 

Given [H_{3}O^{+}] = 0.00770 M
Let the initial concentration of acid be x and change y
So y =
=
= 0.00770 M



0.00257 x - 0.00001979 = 0.00005929
x = 0.031 M
Therefore, initial concentration of the weak acid is <u>0.031 M</u>