Answer: F(t) = 11 - 0.9(t)
Explanation:
We know the following:
The candle burns at a ratio given by:
Burning Ratio (Br) = 0.9 inches / hour
The candle is 11 inches long.
To be able to create a function that give us how much on the candle remains after turning it after a time (t). We will need to know how much of the candle have been burned after t.
Let look the following equation:
Br = Candle Inches (D) / Time for the Candle to burn (T) (1)
Where (1) is similar to the Velocity equation:
Velocity (V) = Distance (D)/Time(T)
This because is only a relation between a magnitude and time.
Let search for D on (1)
D = Br*T (2)
Where D is how much candle has been burn in a specif time
To create a function that will tell us how longer remains of the candle after be given a variable time (t) we use the total lenght minus (2):
How much candle remains? ( F(t) ) = 11 inches - Br*t
F(t) = 11 - 0.9(t)
F(t) defines the remaining length of the candle t hours after being lit
The kinetic energy of an object of mass m moving with speed v is given by:

For the bicycle in our problem,

and

, so the kinetic energy is
Answer:
1.38*10^18 kg
Explanation:
According to the Newton's law of universal gravitation:

where:
G= Gravitational constant (6.674×10−11 N · (m/kg)2)
ma= mass of the astronaut
mp= mass of the planet

so:

Answer:what are the answer options?
Explanation
The minimum potential difference must be supplied by the ignition circuit to start a car is -1800 V
<u>Explanation:</u>
Given data,
E= 3 ×10 ⁶ Δx=0.06/100
We have to find the minimum potential difference
E= -ΔV/Δx
ΔV=- E × Δx
ΔV =-3 ×10 ⁶ . 0.06/100
ΔV=-1800 V
The minimum potential difference must be supplied by the ignition circuit to start a car is -1800 V