Answer:
Answer 9 - 100 joules energy was at the producer level
Answer 10 - Remaining energy is used in metabolism
Explanation:
Answer 9
The energy at each trophic level is only 10% of the energy at its previous trophic level.
The energy at producer level is X
% of
Joules
Joules
Answer 10
Because the remaining 90% energy is utilized by the producer for its metabolism
Answer:
The age of the sample is 4224 years.
Explanation:
Let the age of the sample be t years old.
Initial mass percentage of carbon-14 in an artifact = 100%
Initial mass of carbon-14 in an artifact = ![[A_o]](https://tex.z-dn.net/?f=%5BA_o%5D)
Final mass percentage of carbon-14 in an artifact t years = 60%
Final mass of carbon-14 in an artifact = ![[A]=0.06[A_o]](https://tex.z-dn.net/?f=%5BA%5D%3D0.06%5BA_o%5D)
Half life of the carbon-14 = 

![[A]=[A_o]\times e^{-kt}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA_o%5D%5Ctimes%20e%5E%7B-kt%7D)
![[A]=[A_o]\times e^{-\frac{0.693}{t_{1/2}}\times t}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA_o%5D%5Ctimes%20e%5E%7B-%5Cfrac%7B0.693%7D%7Bt_%7B1%2F2%7D%7D%5Ctimes%20t%7D)
![0.60[A_o]=[A_o]\times e^{-\frac{0.693}{5730 year}\times t}](https://tex.z-dn.net/?f=0.60%5BA_o%5D%3D%5BA_o%5D%5Ctimes%20e%5E%7B-%5Cfrac%7B0.693%7D%7B5730%20year%7D%5Ctimes%20t%7D)
Solving for t:
t = 4223.71 years ≈ 4224 years
The age of the sample is 4224 years.
There are many kinds of pyroclastic material ejected during a volcanic eruption. Ash is the most common pyroclastic rock material ejected during an eruption. Volcanic ash is so fine that it can be blown into the atmosphere and picked up by the jet stream where it can circle the Earth for several years.
<h3>Balanced equation :
2C₂H₆ (g) + 7O₂ (g) ⟶ 4CO₂ (g) + 6H₂O (ℓ)</h3><h3>Further explanation</h3>
Alkanes are saturated hydrocarbons that have single bonds in chains
General formula for alkanes :

Hydrocarbon combustion reactions (specifically alkanes)

So that the burning of ethane with air (oxygen):

2C₂H₆ (g) + 7O₂ (g) ⟶ 4CO₂ (g) + 6H₂O (ℓ)
or we can use mathematical equations to solve equilibrium chemical equations by giving the coefficients for each compound involved in the reaction
C₂H₆ (g) + aO₂ (g) ⟶ bCO₂ (g) + cH₂O (ℓ)
C : left 2, right b ⇒ b=2
H: left 6, right 2c⇒ 2c=6⇒ c= 3
O : left 2a, right 2b+c⇒ 2a=2b+c⇒2a=2.2+3⇒2a=7⇒a=7/2
Answer:
The atomic number of the sodium atom is 11. The atomic mass number can be estimated by rounding the atomic mass to 23.
Explanation:
The atomic number of the sodium atom is 11. The atomic mass number can be estimated by rounding the atomic mass to 23.