Answer
_2 HNO₃ + 1 Mg(OH)₂ → 1 Mg(NO₃)₂ + 2 H₂O
Explanation
Given:
______HNO3 + Mg(OH)2 ------>
Solution:
Note that the reaction between an acid and a base will give salt and water only.
Hence the complete reaction of the given equation is:
___HNO₃ + Mg(OH)₂ → Mg(NO₃)₂ + H₂O
To get the balanced equation for the acid-base reaction, 2 moles of HNO₃ will react with 1 mole of Mg(OH)₂ to produced 1 mole of Mg(NO₃)₂ and 2 moles of H₂O.
Therefore, the complete and balanced equation for the given acid-base reaction is:
_2 HNO₃ + 1 Mg(OH)₂ → 1 Mg(NO₃)₂ + 2 H₂O
Answer:
See explanation
Explanation:
In this case, we have to remember the meaning of the nomenclature "18:2Δ9,12". Where 18 is the <u>number of carbon atom</u>s, 2 is the <u>number of double bonds,</u> and the numbers successive to Δ "delta" the position of the double bonds <u>starting</u> to count from the carboxylic -COOH end of the molecule.
In other words, the main functional group is a <u>carboxylic acid</u>. We have a total of 18 carbons. Additionally, we have 2 double bonds. On carbons 9 and 12.
Lets see figure 1
I hope it helps!
The answer is d the inflation scale