Answer:
C. Trp D. Phe E. Tyr
Explanation:
The concentration of a protein has a direct relation with absorbance of the protein in a UV spectrophotometer. The formula which relates concentration with absorbance is described as under:
A = ∈ x c x l
where, A = Absorbance
∈ = Molar extinction co-efficient
c = Concentration of absorbing species i.e. protein
l = Path length of light
Tryptophan (Trp), phenylalanine (Phe ) and tyrosine (Tyr) are three aromatic amino acids which are used to measure protein concentration by UV. It is mainly because of tryptophan (Trp), protein absorbs at 280 nm which gives us an idea of protein concentration during UV spectroscopy.
The table depicting the wavelength at which these amino acids absorb and their respective molar extinction coefficient is as under:
Amino acid Wavelength Molar extinction co-efficient (∈)
Tryptophan 282 nm 5690
Tyrosine 274 nm 1280
Phenylalanine 257 nm 570
In view of table above, we can easily see that Molar extinction co-efficient (∈) of Tryptophan is highest amongst all these 3 amino acids that is why it dominates while measuring concentration.
The substance that releases the greatest amount of ions will have the greatest attractive forces within its solution, resulting in a reduced freezing point.
K₂SO₄ yields 3 ions
NH₄I yields 2 ions
CoCl₃ yields 4 ions
Freezing points:
CoCl₃ < K₂SO₄ < NH₄I
Are spotted cats cuter than solid-colored cats?
The balanced reaction is 3
Ca
(
s
)
+
N
2
(
g
) → Ca
3
N
2
(
s
).
<u>Explanation</u>:
A chemical equation is said to be balanced when the total number of atoms present on the reactants side is equal to the total number of atoms present on the product side.
The unbalanced chemical equation is as follows,
Ca
(
s
)
+
N
2
(
g
) → Ca
3
N
2
(
s
)
To balance this equation, you need to look at how many atoms of each element are present on each side of the chemical equation.
Calcium has 1 atom on the reactant and 3 on the products side. To balance the reaction we need to multiply the calcium atom by 3 on the reactants side.
3
Ca
(
s
)
+
N
2
(
g
) → Ca
3
N
2
(
s
)
Now Nitrogen has a coefficient of 2 on both sides of the reaction. Hence the balanced chemical equation will thus be
3
Ca
(
s
)
+
N
2
(
g
) → Ca
3
N
2
(
s
)